欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

22.1.4二次函数yax

第2课时二次函数y=ax2+k的图像和性质 知识点 1二次函数y=ax2+k与y=ax2的图像关系 1.将抛物线y=x2向上平移2个单位长度后所得的抛物线的函数表达式为() A.y=x2+2 B.y=x2-2 C.y=(x+2)2 D.y=(x-2)2 2.教材练习第1题变式 如果将抛物线y=x2+

22.1.4二次函数yaxTag内容描述:

1、第2课时二次函数y=ax2+k的图像和性质知识点 1二次函数y=ax2+k与y=ax2的图像关系1.将抛物线y=x2向上平移2个单位长度后所得的抛物线的函数表达式为()A.y=x2+2 B.y=x2-2C.y=(x+2)2 D.y=(x-2)22.教材练习第1题变式 如果将抛物线y=x2+2向下平移1个单位长度,那么所得新抛物线的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2C.y=x2+1 D.y=x2+33.抛物线y=3x2-5可以看成是由抛物线y=3x2向平移个单位长度得到的.4.将抛物线y=ax2+c向下平移7个单位长度,得到抛物线y=-2x2,则a=,c=.知识点 2二次函数y=ax2+k的图像和性质5.写出下列抛物线的开口方向、对称轴。

2、2.2 二次函数的图象与性质二次函数的图象与性质 第第 2 课时课时 二次函数二次函数 y=ax2和和 y=ax2+c 的图象与性质的图象与性质 1能画出二次函数 yax2和 yax2 c(a0)的图象;(重点) 2掌握二次函数 yax2与 yax2 c(a0)图象之间的联系;(重点) 3能灵活运用二次函数 yax2和 y ax2c(a0)的知识解决简单的问题 (难点) 一、情境导入 在同一平面直角坐标系中,画出函数 y 2x2与 y2x22 的图象 观察这两个函数 图象,它们的开口方向、对称轴和顶点坐标 有哪些相同和不同之处?你能由此说出函 数 y2x2与 y2x22 的图象之间的关系 吗?本节就探讨二次函。

3、22.1.2 二次函数 yax的图象和性质 1一次函数的图象是什么 一条直线 2画函数图象的基本方法不步骤是什么 列表描点连线 3研究函数时,主要用什么来了解函数的性质呢 主要工具是函数的图象 回顾旧知 1 知识点 二次函数yax2的图象 。

4、30.2第1课时二次函数y=ax2的图像和性质知识点二次函数y=ax2的图像和性质命题角度1二次函数y=ax2的图像1.(1)函数y=5x2的图像的开口向,对称轴是,顶点坐标是.(2)函数y=-14x2的图像的开口向,对称轴是,顶点坐标是.2.二次函数y=(k+1)x2的图像如图30-2-1所示,则k的取值范围为.图30-2-13.指出下列抛物线的开口方向、对称轴及顶点坐标.抛物线y=3x2y=-4x2y=34x2y=-13x2开口方向对称轴顶点坐标4.已知二次函数y=12x2.(1)根据下表给出的x值,求出对应的y值后填写在表中;x-3-2-10123y=12x21292(2)在给出的平面直角坐标系(如图30-2-2)中画出函数y=12x2的图。

5、5.2第1课时二次函数y=ax2的图像和性质知识点 1二次函数y=ax2的图像的画法1.教材“操作与思考”变式 用描点法画出二次函数y=2x2的图像.解:(1)列表:恰当地选取自变量x的几个值,计算函数y对应的值.x-2-1012y(2)描点:以表中各对x,y的值作为点的,在图5-2-1的平面直角坐标系中描出对应的点.(3)连线:用平滑的顺次连接所描出的各点.图5-2-12.下列图像中,是二次函数y=x2的图像的是()图5-2-2知识点 2二次函数y=ax2的图像和性质3.教材练习第2题变式 二次函数y=-3x2的图像的开口方向为,顶点坐标是,对称轴是,当x0时,y随x的增大而;当x=时,y有最值是.4.下。

6、04 二次函数 yax 2bx c 的图像和性质高中必备知识点 1:二次函数图像的伸缩变换问题 函数 yax 2与 yx 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出 y2x 2,y 1x2,y 2x 2 的图象,通过这些函数图象与函数 yx 2 的图象之间的关系,推导出函数 yax 2 与 yx 2 的图象之间所存在的关系先画出函数 yx 2,y 2x 2 的图象先列表:x 3 2 1 0 1 2 3 x2 9 4 1 0 1 4 9 2x2 18 8 2 0 2 8 18从表中不难看出,要得到 2x2 的值,只要把相应的 x2 的值扩大两倍就可以了再描点、连线,就分别得到了函数 yx 2,y 2x 2 的图象(如图 21 所示。

7、2.2 二次函数的图象与性质,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第2课时 二次函数y=ax2和y=ax2+c的 图象与性质,北师大版九年级下册数学教学课件,学习目标,1.会画二次函数y=ax2和y=ax2+c的图象.(难点) 2.掌握二次函数y=ax2和y=ax2+c的性质并会应用.(重点) 3.比较函数y=ax2与y=ax2+c的联系.,导入新课,情境引入,门禁反映了图形的平移,大家还记得平移的要点吗?,羽毛球的运动轨迹可以用y=ax2的图象刻画,大家能回忆出二次函数y=x2的性质吗?,如果二次函数y=ax2的图象与平移碰撞在一起,会擦出怎样的火花呢?让我们拭目以。

8、22.1.2 二次函数yax2的图象,1.知道二次函数的图象是抛物线; 2.会画y=ax2的图象,并能结合图象理解y=ax2的性质.,一次函数的图象是一条直线,反比例函数的图象是双曲线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?,列表,描点,连线,思考,你会用描点法画二次函数y=x2的图象吗?,9,4,1,1,0,4,9,观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:,描点,连线,y=x2,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.,这条抛物线关于y轴对称,y轴就是它的对称轴.,对称轴与抛物 线的交点叫做 抛物线的顶点, 。

9、2.2 二次函数的图象与性质,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第2课时 二次函数y=ax2和y=ax2+c的 图象与性质,学习目标,1.会画二次函数y=ax2和y=ax2+c的图象.(难点) 2.掌握二次函数y=ax2和y=ax2+c的性质并会应用.(重点) 3.比较函数y=ax2与y=ax2+c的联系.,导入新课,情境引入,门禁反映了图形的平移,大家还记得平移的要点吗?,羽毛球的运动轨迹可以用y=ax2的图象刻画,大家能回忆出二次函数y=x2的性质吗?,如果二次函数y=ax2的图象与平移碰撞在一起,会擦出怎样的火花呢?让我们拭目以待吧!,讲授新课,合作探究,画出函。

10、221.4 二次函数 yax2bxc 的图象和性质第 1 课时 二次函数 yax2bxc 的图象和性质1会画二次函数 y ax2 bx c 的图象2熟记二次函数 y ax2 bx c 的顶点坐标与对称轴公式3用配方法求二次函数 y ax2 bx c 的顶点坐标与对称轴一、情境导入火箭被竖直向上发射时,它的高度 h(m)与时间 t(s)的关系可以近似用h5 t2150 t10 表示那么经过多长时间,火箭达到它的最高点?二、合作探究探究点一:二次函数 y ax2 bx c 的图象和性质【类型一】二次函数图象的位置与系数符号互判如图,二次函数 y ax2 bx c 的图象开口向上,图象经过点(1,2)和(1,0)且与 y 。

11、22.1.4 二次函数y axbxc的图象和性质 第1课时 回顾旧知 yax2 yaxh2 k 上正下负 左加右减 一般地,二次函数yaxh2 k不yax2的相同, 丌同. 形状 位置 请说出抛物线yaxk, yaxh,yaxhk的开口方向。

12、221.3 二次函数 ya(x h )2k 的图象和性质第 1 课时 二次函数 y ax2 k 的图象和性质1会用描点法画出 y ax2 k 的图象2掌握形如 y ax2 k 的二次函数图象的性质,并会应用3理解二次函数 y ax2 k 与 y ax2之间的联系一、情境导入在边长为 15cm 的正方形铁片中间剪去一个边长为 x(cm)的小正方形铁片,剩下的四方框铁片的面积 y(cm2)与 x(cm)的函数关系式是什么?它的顶点坐标是什么?二、合作探究探究点一:二次函数 y ax2 k 的图象与性质【类型一】 y ax2 k 的图象与性质的识别若二次函数 y ax22 的图象经过点(2,10),则下列说法错误的是( )A 。

13、22.1.4 二次函数y axbxc的图象和性质 第2课时 已知一次函数图象上两个点的坐标就可以用待定系数法求出一次函数的解析式,那么要求一个二次函数的解析式需要哪些条件,用什么方法求解呢这就是我们本节课要学习的内容. 1 知识点 用一般式。

14、22.1.4 二次函数 y=ax2+bx+c 的图象和性质基础闯关全练拓展训练1.(2017 江苏南京栖霞二模)二次函数 y=ax2+bx+c(a0)的部分对应值如下表:x -3 -2 0 1 3 5 y 7 0 -8 -9 -5 7 则二次函数 y=ax2+bx+c 在 x=2 时,y= . 2.若 A(1,2),B(3,2),C(0,5),D(m,5)是抛物线 y=ax2+bx+c 上的四点,则 m= . 3.(2017 山东滨州阳信期中)如图 ,二次函数 y=ax2+bx+c 的图象经过 A,B,C 三点.(1)观察图象写出 A,B,C 三点的坐标, 并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴 .能力提升全练拓展训练1.(2017 浙江绍兴中考)矩形 ABCD 的两条对称轴为坐。

15、2 22 2. .1 1 二次函数的二次函数的图象和性质图象和性质 22.1 22.1 二次函数的图象二次函数的图象和和性质性质 22.1.422.1.4 二次函数二次函数yax2bxc的图象的图象 和性质和性质 第一课时 第二课时 人教版。

16、22.1.2 二次函数二次函数 yax的图象和性质的图象和性质 教学背景: 学生通过前面已熟知了画函数图象的方法:列表描点连线,也学习了一次函数反比例函数的图像画法及形状,这为探究函数 yax2 的图象做好了知识上的准备。学生也具备了基本作。

17、知识精讲二次函数yaxbxc的图像和性质 九年级 数学 求二次函数y 2x28x7图象的对称轴和顶点坐标. 我们能否把二次函数的一般式yax2bxc化成顶点式yaxh2k的形式呢 这样我们就能把它当作公式去记忆,从而能快速准确的找到二次函数。

18、预习课程二次函数yaxbxc的图像和性质 九年级 数学 说出下列二次函数图象的开口方向对称轴和顶点坐标: 1yx523; 2y3x724; 3y2x326; 4y5x9210. 你能确定二次函数y2x28x7图象的开口方向对称轴和顶点坐标吗。

19、,第22章:二次函数,22.1 二次函数的图像和性质,人教版九年级上册,22.1.4 二次函数y=ax2 +bx+c 的图象和性质(1),学习目标:,1.会用描点法画二次函数的图象,并能根据图象归纳二次函数的性质。2.会用配方法和公式法求二次函数图象的顶点坐标和对称轴。3.会灵活运用二次函数的图象和性质解决简单的实际问题。,向上,向下,(h ,k),(h ,k),x=h,x=h,当xh时, y随着x的增大而增大。,当xh时, y随着x的增大而减小。,x=h时,y最小值=k,x=h时,y最大值=k,抛物线y=a(x-h)2+k(a0)的图象可由y=ax2的图象通过上下和左右平移得到.,回顾:二次函数y=a(x-h)2+k。

20、22.1.4 二次函数二次函数 yax bxc 的图象和性质的图象和性质 第第 1 课时课时 一教学目标一教学目标 一一 知识目标知识目标 1由图像确定的符号,及判定与 轴 轴交点情况 2求二次函数的解析式,三种不同的表达式 二二 能力目标。

【22.1.4二次函数yax】相关PPT文档
【班海】新人教版九年级上22.1.2二次函数y=ax²的图象和性质ppt课件
人教版数学九年级上22.1.2二次函数y=ax2的图象课件
北师大版九年级下数学《2.2.2二次函数y=ax2和y=ax2+c的图象与性质》课件
2021年人教版九年级上22.1.4二次函数y=ax2+bx+c的图像和性质ppt课件
【班海】九年级【章节知识精讲】22.1.4二次函数y=ax2+bx+c的图像和性质ppt课件
【班海】九年级【预习课程】22.1.4二次函数y=ax2+bx+c的图像和性质ppt课件
22.1.4《二次函数y=ax²《+bx+c《的图象和性质》课件
【22.1.4二次函数yax】相关DOC文档
5.2(第2课时)二次函数y=ax2+k的图像和性质 同步分层训练(含答案)
30.2(第1课时)二次函数y=ax2的图像和性质 同步分层训练(含答案)
5.2(第1课时)二次函数y=ax2的图像和性质 同步分层训练(含答案)
2019年初升高数学衔接之二次函数y=ax2+bx+c的图像和性质
《22.1.4.1二次函数y=ax2+bx+c的图象和性质》教案
《22.1.3.1二次函数y=ax2+k的图象和性质》教案
22.1.2二次函数y=ax²的图象和性质【教案】
22.1.4二次函数y=ax²+bx+c的图象和性质【教案】
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开