1 第第 1919 讲讲 点、直线和圆的位置关系及其计算点、直线和圆的位置关系及其计算 一、考点知识梳理一、考点知识梳理 【考点【考点 1 1 切线的性质与判定】切线的性质与判定】 1.点与圆的位置关系(设 r 为圆的半径,d 为点到圆心的距离) 位置关系,数量(d 与 r) 点在圆内 dr,点在
24.2.1点和圆的位置关系教案Tag内容描述:
1、 1 第第 1919 讲讲 点、直线和圆的位置关系及其计算点、直线和圆的位置关系及其计算 一、考点知识梳理一、考点知识梳理 【考点【考点 1 1 切线的性质与判定】切线的性质与判定】 1.点与圆的位置关系(设 r 为圆的半径,d 为点到圆心的距离) 位置关系,数量(d 与 r) 点在圆内 dr,点在圆上 dr,点在圆外 dr,数量(d 与 r) 2.直线和圆的三种位置关系: 相离:一条直线和圆没有。
2、3.6 直线和圆的位置关系直线和圆的位置关系 第第 1 课时课时 直线和圆的位置关系及切线的性质直线和圆的位置关系及切线的性质 1理解直线和圆的相交、相切、相离 三种位置关系;(重点) 2掌握直线和圆的三种位置关系的判 定方法; (难点) 3掌握切线的性质定理,会用切线的 性质解决问题(重点) 一、情境导入 在纸上画一条直线, 把硬币的边缘看作 圆,在纸上移动硬币,你能发现直线与圆的 公共点个数的变化情况吗?公共点个数最 少时有几个?最多时有几个? 二、合作探究 探究点一:直线和圆的位置关系 【类型一】 判定直线和圆的位置关系 已。
3、 1 第第 1919 讲讲 点、直线和圆的位置关系及其计算点、直线和圆的位置关系及其计算 一、考点知识梳理一、考点知识梳理 【考点【考点 1 1 切线的性质与判定】切线的性质与判定】 1.点与圆的位置关系(设 r 为圆的半径,d 为点到圆心的距离) 位置关系,数量(d 与 r) 点在圆内 dr,点在圆上 dr,点在圆外 dr,数量(d 与 r) 2.直线和圆的三种位置关系: 相离:一条直线和圆没有。
4、24.2 点和圆、直线和圆的位置关系一选择题(共 20 小题)1(2018哈尔滨)如图,点 P 为O 外一点,PA 为O 的切线,A 为切点,PO 交O 于点B,P=30,OB=3,则线段 BP 的长为( )A3 B3 C6 D92(2018眉山)如图所示,AB 是O 的直径,PA 切O 于点 A,线段 PO 交O 于点 C,连结 BC,若P=36,则B 等于( )A27 B32 C36 D543(2018宜宾)在ABC 中,若 O 为 BC 边的中点,则必有:AB 2+AC2=2AO2+2BO2成立依据以上结论,解决如下问题:如图,在矩形 DEFG 中,已知 DE=4,EF=3,点 P 在以 DE 为直径的半圆上运动,则 PF2+PG2的最小值为( )A B C34 D。
5、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第10讲-直线和圆的位置关系授课类型T同步课堂P实战演练S归纳总结教学目标 结合图形理解直线与圆的位置关系,并掌握条件; 熟练掌握切线的性质与判定定理; 掌握三角形内切圆尺规作图的方法与内心性质。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)直线和圆的三种位置关系:相离:一条直线和圆没有公共点相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一。
6、新人教版九年级上册 24.2 点和圆、直线和圆的位置关系同步练习一选择题1在ABC 中,若 O 为 BC 边的中点,则必有:AB2+AC2=2AO2+2BO2 成立依据以上结论,解决如下问题:如图,在矩形 DEFG 中,已知 DE=4,EF=3 ,点 P 在以 DE 为直径的半圆上运动,则 PF2+PG2 的最小值为( )A B C34 D102已知O 的半径为 4cm,如果圆心 O 到直线 l 的距离为 3.5cm,那么直线 l与O 的位置关系是( )A相交 B相切 C相离 D不确定3如图,点 I 为ABC 的内心,AB=4 ,AC=3,BC=2,将ACB 平移使其顶点与 I 重合,则图中阴影部分的周长为( )A4.5 B4 C3 D24如图,。
7、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第12讲-直线和圆的位置关系授课类型T同步课堂P实战演练S归纳总结教学目标 结合图形理解直线与圆的位置关系,并掌握条件; 熟练掌握切线的性质与判定定理; 掌握三角形内切圆尺规作图的方法与内心性质。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)直线和圆的三种位置关系:相离:一条直线和圆没有公共点相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一。
8、2018-2019 学年度人教版数学九年级上册同步练习24.2.1 点和圆的位置关系一选择题(共 16 小题)1已知O 的半径为 5,若 OP=6,则点 P 与O 的位置关系是( )A点 P 在O 内 B点 P 在O 外 C点 P 在O 上 D无法判断2在平面直角坐标系中,圆心为坐标原点,O 的半径为 5,则点 P( 3,4)与O 的位置关系是( )A点 P 在O 外 B点 P 在O 上 C点 P 在O 内 D无法确定3平面内有一点 P 到圆上最远的距离是 6,最近的距离是 2,则圆的半径是( )A2 B4 C2 或 4 D84如图,在矩形 ABCD 中,AB=4,AD=3,以顶点 D 为圆心作半径为 x 的圆,若要求另外三个顶点。
9、,导入新课,讲授新课,当堂练习,课堂小结,24.2 圆的基本性质,第1课时 与圆有关的概念及点与圆的 位置关系,第24章 圆,1.认识圆,理解圆的本质属性.(重点) 2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联 系.(难点) 3.初步了解点与圆的位置关系.,学习目标,观察下列生活中的图片,找一找你所熟悉的图形.,导入新课,图片引入,骑车运动,看了此画,你有何想法?,思考:车轮为什么做成圆形?做成三角形、正方形可以吗?,车轮为圆形的原理分析:(下图为FLASH动画,点击),问题1 一些学生正在做投。
10、24.2 点和圆、直线和圆 的位置关系,24.2.1 点和圆的位置关系,第二十四章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.理解并掌握点和圆的三种位置关系.(重点) 2.理解不在同一直线上的三个点确定一个圆及其运用.(重点) 3.了解三角形的外接圆和三角形外心的概念. 4.了解反证法的证明思想.,学习目标,导入新课,你玩过飞镖吗?它的靶子是由一些圆组成的,你知道击中靶子上不同位置的成绩是如何计算的吗?,情境引入,视频引入,问题1:观察下图中点和圆的位置关系有哪几种?,.,C,.,.,.,. B,.,.A,.,点与圆的位置关系有三种: 点在圆内,点在圆上。
11、2 24 4. .2 2 点和圆直线和圆的位置关系点和圆直线和圆的位置关系 2 24.2 4.2 点点和圆直线和和圆直线和圆的圆的 位置关系位置关系 24.2.1 24.2.1 点和圆的位置关系点和圆的位置关系 人教版人教版 数学数学 九九。
12、242.1 点和圆的位置关系01 基础题知识点 1 点和圆的位置关系1已知点 A 在直径为 8 cm 的O 内,则 OA 的长可能是(D)A8 cm B6 cmC4 cm D2 cm2(吕梁孝义市期中)已知O 是以坐标原点为圆心,5 为半径的圆,点 P 的坐标为(3,4),则点 P 与O 的位置关系是 (B)A点 P 在O 外 B点 P 在O 上C点 P 在O 内 D无法确定3已知圆的半径为 6 cm,点 P 在圆外,则线段 OP 的长度的取值范围是 OP6_cm4设O 的半径为 r,点 P 到圆心的距离 OPd,则有: (1)点 P 在圆外 dr;(2) 点 P 在圆上dr;(3)点 P 在圆内d180,这与三角形的内角和等于 180相矛盾因此假设不成。
13、24.2 点、直线、圆和圆的位置关系 24.2.1 点和圆的位置关系,1.理解并掌握,设O的半径为r,点P到圆心的距离OP=d, 则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr及 其运用 2.理解不在同一直线上的三个点确定一个圆并掌握它的运用 3.了解三角形的外接圆和三角形外心的概念了解反证法的证明思想,爱好运动的小华、小强、小兵三人相邀举行一次掷飞镖比赛.他们把靶子钉在一面土墙上,规则是谁掷出的飞镖落点离红心越近,谁就胜.如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩最好?,A,B,C,如图,设O 的半径为r,A。
14、242 点和圆、直线和圆的位置关系242.1 点和圆的位置关系1能从点和圆的位置关系,判断点和圆心的距离与半径的大小关系2学会用已知点到圆心的距离与半径的大小关系,判断点与圆的位置关系3认识三角形的外接圆,三角形的外心的概念,会画三角形的外接圆一、情境导入同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;如图是一位运动员射击 6 发子弹在靶上留下的痕迹你知道这个运动员的成绩吗?请同学们算一算(击中最里面的圆的成绩为 10 环,依次为9、8、1 环)二、合作探究探究点一:点和。