12.1随机事件的概率与古典概型 最新考纲1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别.2.通过实例,了解两个互斥事件的概率加法公式.3.通过实例,理解古典概型及其概率计算公式.4.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率 1
25.1.2概率教案Tag内容描述:
1、12.1随机事件的概率与古典概型最新考纲1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别.2.通过实例,了解两个互斥事件的概率加法公式.3.通过实例,理解古典概型及其概率计算公式.4.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率1概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定。
2、第六章 概率初步教材简析本章的主要内容有事件的分类及判断随机事件可能性的大小;随机事件发生频率的稳定性;等可能事件的概率及计算简单事件发生的概率在认识可能性的基础上,进一步理解事件的分类和随机事件可能性的大小,然后通过试验感受在实验次数很大时,随机事件发生频率的稳定性,进而认识等可能事件的概率,体会概率是描述随机现象的数学模型本章内容是中考重要考点之一,主要以考查随机事件、必然事件与不可能事件等概念的区分以及简单的概率计算为主,题型以选择题、填空题为主,难度较小教学指导【本章重点】求等可能事件的。
3、12.7 条件概率与事件的独立性条件概率与事件的独立性 典例精析典例精析 题型一 条件概率的求法 例 1 一张储蓄卡的密码共 6 位数字, 每位数字都可从 09 中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求: 1任。
4、学科教师辅导讲义学员编号: 年 级:中 考课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第14讲-数据分析与概率初步授课类型T同步课堂P实战演练S归纳总结教学目标 了解总体、个体样本和样本容量等与统计有关的概念,体会抽样的必要性,了解简单随机抽样; 会求一组数据的平均数、加权平均数、中位数、众数、极差、方差,能理解它们在实际问题中反映的意义,而且会运用样本估计总体的思想方法解决实际应用问题; 能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率。授课日期及时段T(Textbook-Based)同步课堂体。
5、学科教师辅导讲义学员编号: 年 级:中 考课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-数据分析与概率初步授课类型T同步课堂P实战演练S归纳总结教学目标 了解总体、个体样本和样本容量等与统计有关的概念,体会抽样的必要性,了解简单随机抽样; 会求一组数据的平均数、加权平均数、中位数、众数、极差、方差,能理解它们在实际问题中反映的意义,而且会运用样本估计总体的思想方法解决实际应用问题; 能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率。授课日期及时段T(Textbook-Based)同步课堂体。
6、第二十五章 概率初步251 随机事件与概率251.1 随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同重点随机事件的特点难点判断现实生活中哪些事件是随机事件一、情境引入分析说明下列事件能否一定发生:今天不上课;煮熟的鸭子飞了;明天地球还在转动;木材燃烧会放出热量;掷一枚硬币,出现正面朝上二、自主探究1提出问题教师事先准备的三个袋子中分别装有 10 个白色的乒乓球;5 个白色的乒乓球和 5 个黄色的乒乓球;10 个黄色的乒乓球,分组讨论。
7、第13讲 概率初步温故知新轴对称(一)轴对称的定义(1)轴对称:如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。(2)轴对称图形:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。(3)轴对称与轴对称图形的区别:成轴对称是对于两个图形而言的,指的是两个图形形状和位置关系,而轴对称图形是指一个具有特殊形状的图形。(二)轴对称的性质(1)对应点、线段、角的概念:我们把对称轴折叠后能够重合的点。
8、 概率初步 第17讲 适用学科 初中数学 适用年级 初中一年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1、确定事件与随机事件 2、事件发生的可能性大小 3、频率的稳定性 4、频率与概率 5、等可能事件概率的定义 6、等可能事件概率的应用 教学目标 1、通过具体问题,感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事 件发生的可能性是有大小的; 2、学会。
9、10.4随机事件的概率考情考向分析以考查随机事件、互斥事件与对立事件的概率为主,试题为简单题,题型为填空题1概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A)2事件的关系与运算定义符号表示包含关系如果事件A发生。
10、 概率初步 第17讲 适用学科 初中数学 适用年级 初中一年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1、确定事件与随机事件 2、事件发生的可能性大小 3、频率的稳定性 4、频率与概率 5、等可能事件概率的定义 6、等可能事件概率的应用 教学目标 1、通过具体问题,感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事 件发生的可能性是有大小的; 2、学会。
11、 概率概率 第8讲 适用学科 初中数学 适用年级 初三 适用区域 北师版区域 课时时长(分钟) 120 知识点 简单事件概率的计算 树状图或列表法计算概率 概率与代数、几何知识结合 用平均频率估计概率 用实验频率估计概率 教学目标 1、掌握计算概率的方法. 2、应用概率解决实际问题. 教学重点 能熟练掌握计算概率的方法. 教学难点 概率综合题. 【教学建议教学建议】。
12、专题专题 06 06 统计与概率统计与概率 聚焦聚焦 1 1 数据的收集与整理数据的收集与整理 锁定目标:锁定目标: 考纲指引 备考点睛 1.了解总体 个体和样本容量等与统计有关的概念,体会不同的抽样可能得到不同的结果 2.熟悉几种常见统计。
13、3.1 用树状图或表格求概率用树状图或表格求概率 第第 1 课时课时 用树状图或表格求概率用树状图或表格求概率 1.会用画树状图或列表的方法计算简单随机事件发生的概率; (重点) 2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识 解决实际问题.(难点) 一、情景导入 游戏:小明对小亮说: “我向空中抛 2 枚同样的一元硬币,如果落地后一正一反,算我赢,如 果。
14、3.2 用频率估计概率用频率估计概率 1.知道通过大量的重复试验,可以用频率来估计概率; (重点) 2.了解替代模拟试验的可行性. 一、情景导入 我们知道,任意抛一枚均匀的硬币,“正面朝上”的概率是 0.5,许多科学家曾做过成千上万 次的实验,其中部分结果如下表: 实验者 抛掷次数 n “正面朝上”次数 m 频率 m/n 隶莫弗 布丰 皮尔逊 皮尔逊 2048 4040 12000 240。
15、人教版数学九年级上册 第 五 章 概 率 初 步 5 . 2 概 率 第 五 章 概 率 初 步 第 2 课 时 主讲人:小XX 学习目标 1理解概率的意义 2掌握求概率的方法 学习目标学习目标 例1 一个可以自由转动的转盘,转盘分成7个大。
16、25.1 随机事件与概率,第二十五章 概率初步,25.1.2 概 率,导入新课,讲授新课,当堂练习,课堂小结,1.理解一个事件概率的意义. 2.会在具体情境中求出一个事件的概率.(重点) 3.会进行简单的概率计算及应用.(难点),学习目标,视频中的游戏公平吗?为什么?,视频引入,导入新课,思考:在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?,讲授新课,活动1 从分别有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1,2,3,4,5.,因为纸团看上去完全一样,又是随机抽取,所以。
17、2 25 5.1 .1 随机事件与概率随机事件与概率 25.1 25.1 随机事件与随机事件与概率概率 25.1.2 25.1.2 概概 率率 人教版人教版 数学数学 九九年级年级 上册上册 2 25 5.1 .1 随机事件与概率随机事件与。
18、25.1.2 概率,1在具体情境中了解概率的意义. 2会求简单问题中某一事件的概率.,在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力这句话有一个非同寻常的来历1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰.一时间,德军的“潜艇战”搞得盟军焦头烂额.,1名数学家10个师,为此,有位美国海军将领专门去请教了一位数学家,数学家们运用概率论分析后认为:舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100。
19、人教版九年级上册,25.1.2 概率,第25章 概率,1.在具体情境中理解概率的定义,体会事件发生的可能性大小与概率的关系。 2.理解概率的计算公式,明确概率的取值范围,能求简单的等可能性事件的概率。,学习目标:,在一定条件下: 必然会发生的事件叫必然事件;,必然不会发生的事件叫不可能事件;,可能会发生,也可能不发生的事件叫不确定事件或随机事件.,知识点复习,复习:下列事件中哪些事件是随机事件?哪些事件是必然事件?哪些是不可能事件?,(1)抛出的铅球会下落,(2)某运动员百米赛跑的成绩为秒,(3)买到的电影票,座位号为单号,(4) 。