专题24 相似三角形判定与性质 专题知识回顾 1相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似多边形对应边的比叫做相似比。 2三角形相似的判定方法: (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,
27.2.1相似三角形的判定Tag内容描述:
1、专题24 相似三角形判定与性质专题知识回顾 1相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似多边形对应边的比叫做相似比。2三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对。
2、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.3 相似三角形应用举例12018长春孙子算经 是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有杆不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺同时立一根一尺五寸的小标杆,它的影长五寸(提示:1 丈10 尺,1 尺10 寸) ,则竹竿的长为( )A五丈 B四丈五尺C一丈 D五尺22018绍兴学校门口的栏杆如图 27252 所示,栏杆从水平位置 BD 绕 O 点旋。
3、? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 。
4、第 1 页,共 17 页相似三角形的判定测试时间:100 分钟 总分: 100题号 一 二 三 四 总分得分一、选择题(本大题共 10 小题,共 30.0 分)1. 如图,在 中,点 P 在边 AB 上,则在下列四个条件中: ; ;= =; ,能满足2=与 相似的条件是 ( )A. B. C. D. 2. 下列 的正方形网格中,小正方形的边长均为 1,三角形的顶44点都在格点上,则在网格图中的三角形与 相似的是 ( )A. B. C. D. 3. 如图所示,每个小正方形的边长均为 1,则下列 A、B、C、D 四个图中的三角形阴影部分 与 相似的是 ( ) ( )A. B. C. D. 4. 如图,在 中, , ,点 D 在 AC 。
5、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.2 相似三角形的性质12018随州如图 272 43,平行于 BC 的直线 DE 把ABC 分成面积相等的两部分,则 的值为( )BDAD图 27243A1 B 22C 1 D 12 222018绥化两个相似三角形的最短边分别为 5 cm 和 3 cm,他们的周长之差为 12 cm,那么大三角形的周长为( )A14 cm B16 cm C18 cm D30 cm32018荆门如图 272 44,四边形 ABCD 为平行四边形,E,F 为 CD 边的两个三等分点,连接 AE,BE 交于点 G,则 SEFG S ABG ( )A13 B31C19 D91图 272444一副三角板叠放如图 2724。
6、 第三章第三章 图形的相似图形的相似 3.53.5 相似三角形的应用相似三角形的应用 基础导练基础导练 1.一根 1.5 米长的标杆直立在水平地面上,它在阳光下的影长为 2.1 米,此时一棵水衫树的影长为 10.5 米,这棵水衫树高为( ) A7.5 米 B8 米 C14.7 米 D15.75 米 2.如图,为了测量池塘的宽DE,在岸边找到点C,测得CD30 m,在DC的延长线上找一点A,。
7、 第三章第三章 图形的相似图形的相似 3.4.23.4.2 相似三角形的性质相似三角形的性质 基础导练基础导练 1.如图是小孔成像原理示意图,根据图中尺寸,蜡烛在暗盒中所成的像的长是( ) Acm Bcm C cm D1cm 2若两个相似三角形的面积之比为 1:4,则它们的最大边的比是( ) A1:2 B1:4C C.1:5 D 1:16 3若ABCDEF,相似比为 1:2。
8、,苏科数学,6.5相似三角形的性质(2),问题情境,问题1在探索“相似三角形的面积比等于相似比的平方”这个结论的过程,我们发现“相似三角形对应高的比等于相似比”,记得证明的方法了吗? 问题2三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,相似三角形对应高的比等于相似比,三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,ABCABC ,AD和AD分别 是ABC和ABC的中线,设相似 比为k,那么,你能有条理地表达理由吗?,讨论一:,观察与思考,ABCABC ,AD和AD分别是ABC和ABC的角平分线,设 相似比。
9、,苏科数学,6.5相似三角形的性质(1),问题情境,1.关于相似三角形,我们已经研究了什么? 2.关于相似三角形的性质,我们如何进行研究? 3.所有的正方形都相似吗?如果正方形的边长分别是1、2、3、4,它们的周长和面积之间有怎样的关系?,如图,点D、E、F分别是ABC各边的中点 (1)DEF与ABC相似吗?为什么? (2)这两个三角形的相似比是多少? (3)这两个三角形的周长、面积有什么关系?,观察与讨论,继续取DEF的各边中点M、N、P,得到上图,此时:(1)MNP与ABC相似吗?为什么?(2)这两个三角形的相似比是多少?(3)这两个三角形的周长。
10、 3.4 3.4 相似三角形的判定与性质相似三角形的判定与性质 第第3 3章章 图形的相似图形的相似 3.4.1 3.4.1 相似三角形的判定相似三角形的判定 教学目标教学目标 1.1. 了解相似三角形的判定方法会用平行法判了解相似三角形的判定方法会用平行法判 定两个三角形相似定两个三角形相似 重点:重点: 用平行法判定两个三角形相似用平行法判定两个三角形相似 难点:难点:平行法判定三角形相似定。
11、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第 1 课时 平行线分线段成比例定理1图 2727,在ABC 中,点 D,E 分别在边 AB,AC 上,DEBC,若 BD2AD ,则( )图 2727A. B ADAB 12 AEEC 12C. D ADEC 12 DEBC 1222018嘉兴如图 272 8,直线 l1l 2l 3.直线 AC 交 l1,l 2,l 3 于点 A,B,C,直线DF 交 l1,l 2,l 3 于点 D,E,F,已知 , .ABAC 13 EFDE图 27283如图 2729,若ADEACB,且 ,DE10,则 CB 15 .ADAC 23图 27294如图 27210,已知直线 l1l 2l 3,AB 3,BC5,DF16,求 DE 。
12、4.7 相似三角形的性质相似三角形的性质 第第 1 课时课时 相似三角形中的对应线段之比相似三角形中的对应线段之比 1.明确相似三角形对应高的比、对应角平分线的比和对应中线的比与相似比的关系; (重点) 2.能熟练运用相似三角形的性质解决实际问题.(难点) 一、情景导入 在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三 角形是相似多边形中的一种,因此三对对应角。
13、*4.5 相似三角形判定定理的证明,第四章 图形的相似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.会证明相似三角形判定定理;(重点) 2.运用相似三角形的判定定理解决相关问题.(难点),导入新课,问题:相似三角形的判定方法有哪些?, 两角对应相等,两三角形相似. 两边对应成比例且夹角相等,两三角形相似. 三边对应成比例,两三角形相似.,讲授新课,在上两节中,我们探索了三角形相似的条件,稍候我们将对它们进行证明,定理1:两角分别相等的两个三角形相似.,已知:如图,在 ABC 和ABC 中,A = A,B =B. 求证:ABC ABC,A,B,C,A,B,C,A,。
14、*4.5 相似三角形判定定理的证明 相似三角形判定定理的证明 1.会证明相似三角形判定定理; (重点) 2.运用相似三角形的判定定理解决相关问题.(难点) 一、情景导入 相似三角形的判定方法有哪些? 答: (1)两角对应相等,两三角形相似; (2)两边对应成比例且夹角相等,两三角形相似; (3)三边对应成比例,两三角形相似. 怎样证明这些结论呢? 二、合作探究 探究点:相似三角形的判定定理 。
15、第三章第三章 图形的相似图形的相似 3.4.13.4.1 相似三角形的判定相似三角形的判定 基础导练基础导练 1.已知:如图,ADEACDABC,图中相似三角形共有( ) A.1 对 B.2 对 C.3 对 D.4 对 2.如图所示,在河的一岸边选定一个目标A,再在河的另一岸边选定B和C,使ABBC,然后选定E,使 ECBC,用视线确定BC和AE相交于D,此时测得BD=。
16、27.2.1 相似三角形的判定 第2课时,1.理解定理“平行于三角形一边的直线与其他两边(或延长线)相交,所构成的三角形与原三角形相似”,“三边对应成比例的两个三角形相似”; 2.培养学生与他人交流、合作的意识.,1. 对应角_, 对应边 的两个三角形, 叫做相似三角形 .,相等,的比相等,2.相似三角形的_, 各对应边 .,对应角相等,的比相等,3.如何识别两三角形是否相似?, DEBC, ADEABC.,平行于三角形一边的直线和其他两边(或两边的延长线) 相交,所构成的三角形与原三角形相似.,思考:有没有其他简单的办法判断两个三角形相似?,是否有ABCABC?,A,B。
17、27.2.1 相似三角形的判定 第4课时,1.理解定理“两角对应相等,两三角形相似”; 2.能灵活地选择定理判定相似三角形.,这两个三角形的三个内角的大小有什么a关系?,三个内角对应相等的两个三角形一定相似吗?,三个内角对应相等.,观察你与老师的直角三角尺 , 相似吗?,画一个三角形,使三个角分别为60,45, 75 .,分别量出两个三角形三边的长度; 这两个三角形相似吗?,即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_,相似,一定需三个角对应相等吗?,相似三角形的判别方法:如果一个三角形的两角分别与另一。
18、,27.2 相似三角形 27.2.1 相似三角形的判定 第1课时,1.理解平行线分线段成比例定理; 2.知道当ABC与DEF的相似比为k时,DEF与ABC的相似比为 .,即对应角相等对应边的比相等我们说ABC与DEF相似,记作 ABCDEF, ABC和DEF的相似比为k, DEF与ABC的相似比为 .,如果A=D, B=E, C=F,,判定两个三角形相似时,是否存在简便的判定方法呢?,问题 如图l1l2 l3,你能否发现在两直线a,b上截得的线段有什么关系?,通过计算可以得到:,由此可得到:,平行线分线段成比例定理:三条平行线截两条直线所得的对应线段的比相等.,说明: 定理的条件是“三条平行线。
19、27.2.1 相似三角形的判定 第3课时,1.理解定理“两边对应成比例且夹角相等的两个三角形相似”; 2.能灵活地选择定理判定相似三角形.,判断两个三角形相似,你有哪些方法,方法1:通过定义(不常用),方法2:通过平行线.,方法3:三边对应成比例.,如果有一点E在边AC上,那么点E应该在什么位置才能使ADEABC相似呢?,所画如图所示,此时,,如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形一定相似吗?,A,B,C,E,D,证明:在ABC的边AB,AC(或它们的延长线) 上分别截取AD=AB,AE=AC,连结DE. A=A,这样,ADEAB。
20、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第 2 课时 相似三角形的判定定理 1,212018利辛县模拟在三角形纸片 ABC 中,AB8,BC4,AC6,按下列方法沿虚线剪下,能使阴影部分的三角形与ABC 相似的是( )2如图 27220,在ABC 与ADE 中,BAC D,要使ABC 与ADE 相似,还需满足下列条件中的( )图 27220A. B ACAD ABAE ACAD BCDEC. D ACAD ABDE ACAD BCAE3如图 27221,网格中的每个小正方形的边长都是 1,每个小正方形的顶点叫做格点ACB 和DCE 的顶点都在格点上,ED 的延长线交 AB 于。