欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

3.1数系的扩充 学案含答案

3空间直角坐标系 3.1空间直角坐标系的建立 3.2空间直角坐标系中点的坐标 学习目标1.了解空间直角坐标系的建系方式.2.掌握空间中任意一点的表示方法.3.能在空间直角坐标系中求出点的坐标. 知识点空间直角坐标系 1.空间直角坐标系 (1)建系方法:过空间任意一点O作三条两两互相垂直的轴、有相同的

3.1数系的扩充 学案含答案Tag内容描述:

1、3空间直角坐标系3.1空间直角坐标系的建立3.2空间直角坐标系中点的坐标学习目标1.了解空间直角坐标系的建系方式.2.掌握空间中任意一点的表示方法.3.能在空间直角坐标系中求出点的坐标.知识点空间直角坐标系1.空间直角坐标系(1)建系方法:过空间任意一点O作三条两两互相垂直的轴、有相同的长度单位.(2)建系原则:伸出右手,让四指与大拇指垂直,并使四指先指向x轴正方向,然后让四指沿握拳方向旋转90指向y轴正方向,此时大拇指的指向即为z轴正向.(3)构成要素:O叫作原点,x,y,z轴统称为坐标轴,这三条坐标轴中每两条确定一个坐标平面,分。

2、3.1.1 数系的扩充和复数的概念课后训练案巩固提升1.复数 z=(a2+b2)-(a+|a|)i(a,bR )为实数的充要条件是( )A.|a|=|b| B.a0,且 ab D.a0解析: 复数 z 为实数,则-(a+|a|) =0,即 a+|a|=0,因此 a0.答案: D2.设 a,bR,i 是虚数单位,则“ab=0”是“复数 a-bi 为纯虚数”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析: 由 ab=0,得 a=0,b0 或 a0,b=0 或 a=0,b=0,a-bi 不一定为纯虚数 ;若 a-bi 为纯虚数,则有a=0,且 b0,这时有 ab=0.综上,可知选 B.答案: B3.已知 mR,且(m 2-m)+(lg m)i 是纯虚数,则实数 m( )A.等于 0 。

3、章末复习一、选择题1如图所示的是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()考点归纳推理的应用题点归纳推理在图形中的应用答案A解析从所给三个图形中,可以看出,三个黑色三角形在进行顺时针旋转,每次旋转都是隔一格,故选A.2若abCbaD.考点分析法及应用题点分析法解决不等式问题答案C解析取a2,b1,验证可知C正确3我们把1,4,9,16,25,这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n个正方形点数是()An(n1) Bn(n1)C(n1)2 Dn2考点归纳推理的。

4、章末检测试卷(四)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若i为虚数单位,则复数z5i(34i)在复平面内对应的点所在的象限为()A第一象限 B第二象限C第三象限 D第四象限考点复数的乘除法运算法则题点运算结果与点的对应答案A2“复数z是实数”的充分不必要条件为()A|z|z BzCz2是实数 Dz是实数考点复数的概念题点复数的概念及分类答案A解析由|z|z可知z必为实数,但由z为实数不一定得出|z|z,如z2,此时|z|z,故“|z|z”是“z为实数”的充分不必要条件3已知a,bR,i是虚数单位若ai2bi,则(abi)2等于()A34i B34。

5、章末复习一、填空题1已知f(x)x31,设i是虚数单位,则复数的虚部是_答案1解析f(i)i31i1,1i,虚部是1.2若复数(aR,i为虚数单位)是纯虚数,则实数a_.答案6解析i.若复数是纯虚数,则0,且0,所以a6.3复数的虚部是_答案解析i,其虚部是.4若复数zi是纯虚数(i为虚数单位),则tan的值为_考点复数的概念题点由复数的分类求未知数答案7解析复数zi是纯虚数,cos 0,sin 0,cos ,sin ,tan ,则tan7.5若i为虚数单位,则_.答案1i解析1i.6下列说法中正确的是_(填序号)若(2x1)iy(3y)i,其中xR,yCR,则必有2i1i;若一个数。

6、章末复习一、选择题1i是虚数单位,若集合S1,0,1,则()AiS Bi2SCi3S D.S考点虚数单位i及其性质题点虚数单位i的运算性质答案B2已知i是虚数单位,m,nR,且mi1ni,则等于()A1 B1 Ci Di考点复数的乘除法运算法则题点乘除法的运算法则答案D解析由mi1ni(m,nR),得m1且n1.则i.3若a为正实数,i为虚数单位,2,则a等于()A. B2 C. D1考点复数的乘除法运算法则题点利用乘除法求复数中的未知数答案A解析(ai)(i)1ai,|1ai|2,解得a或a(舍)4已知z112i,z2m(m1)i,i为虚数单位,且两复数的乘积z1z2的实部和虚部为相等的正数,则实数m的值为()A B. C D.考。

7、 7.1 复数的概念复数的概念 7.1.1 数系的扩充和复数的概念数系的扩充和复数的概念 学习目标 1.了解引进虚数单位 i 的必要性, 了解数系的扩充过程.2.理解在数系的扩充中由 实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法, 理解复数相等的 充要条件. 知识点一 复数的有关概念 1.复数 (1)定义:我们把形如 abi(a,bR)的数叫做复数,其中 i 叫做虚数单位,满足 i21. (2)表示方法:复数通常用字母 z 表示,即 zabi(a,bR),其中 a 叫做复数 z 的实部,b 叫做复数 z 的虚部. 2.复数集 (1)定义:全体复数所构成的集合叫做。

8、7.17.1 复数的概念复数的概念 7 7. .1.11.1 数系的扩充和复数的概念数系的扩充和复数的概念 1设 a,bR,则a0是复数 abi 是纯虚数的 A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 答案 B 。

9、1数系的扩充与复数的引入(二)一、选择题1在复平面内,复数zcos 3isin 3的对应点所在象限为()A第一象限 B第二象限C第三象限 D第四象限考点复数的几何意义题点复数与点的对应关系答案B解析0,cos 30,故复数zcos 3isin 3的对应点位于第二象限2已知复数z(m3)(m1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A(3,1) B(1,3)C(1,) D(,3)考点复数的几何意义题点复数与点的对应关系答案A解析由题意得解得3m1.3已知a为实数,若复数z(a23a4)(a4)i为纯虚数,则复数aai在复平面内对应的点位于()A第一象限 B第二象限C第三象限 D第四象限考。

10、1数系的扩充与复数的引入(一)一、选择题1设a,bR,“a0”是“复数abi是纯虚数”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件考点复数的概念题点复数的概念及分类答案B解析因为a,bR,当a0时,复数abi不一定是纯虚数,也可能b0,即abi0R.而当复数abi是纯虚数,则a0一定成立所以a,bR,a0是复数abi是纯虚数的必要不充分条件2以2i的虚部为实部,以i2i2的实部为虚部的新复数是()A22i BiC2i D.i考点复数的概念题点求复数的实部和虚部答案A解析设所求新复数zabi(a,bR),由题意知复数2i的虚部为2,复数i2i2i2(1)2i的实部。

11、7.17.1 复数的概念复数的概念 7 7. .1.11.1 数系的扩充和复数的概念数系的扩充和复数的概念 基础达标 一选择题 1.若复数 za22aa2a2iaR是纯虚数,则 A.a0 或 a2 B.a0 C.a1 且 a2 D.a1 或。

12、7.1.1 数系的扩充和复数的概念数系的扩充和复数的概念 合格基础练合格基础练 一选择题一选择题 1下列命题: 1若 abi0,则 ab0; 2xyi22ixy2; 3若 yR,且y21y1i0,则 y1. 其中正确命题的个数为 A0 个 。

13、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫作复平面x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

14、第三章 数系的扩充与复数的引入 章末复习 学习目标1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算且认识复数加减法的几何意义 1复数的有关概念 (1)复数的概念 形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数 (2)复数相等:abicdiac且bd(a,b,c,dR) (3)共轭复数:ab。

15、第三章 数系的扩充与复数 章末复习 学习目标1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算且认识复数加减法的几何意义 1复数的有关概念 (1)复数的概念 形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数 (2)复数相等:abicdiac且bd(a,b,c,dR) (3)共轭复数:abi与c。

16、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫作复平面x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

17、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫做复平面x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

18、1数系的扩充与复数的引入(一)学习目标1.了解引进虚数单位i的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法,理解复数相等的充要条件知识点一复数的概念及复数的表示思考为解决方程x22在有理数范围内无根的问题,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?答案设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数梳理复数及其表示(1)复数的定义规定i21,其中i叫作虚数单位;若aR,bR,则形如abi的数叫作复数(2。

19、1数系的扩充与复数的引入(二)学习目标1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法知识点一复平面思考实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?答案任何一个复数zabi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以一一对应梳理当用直角坐标平面内的点来表示复数时,我们称这个直角坐标平面为复平面,x轴称为实轴,y轴称为虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都。

20、31 数系的扩充数系的扩充 学习目标 1.了解引进虚数单位 i 的必要性, 了解数集的扩充过程.2.理解在数系的扩充中由 实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法, 理解复数相等的 充要条件 知识点一 复数的概念及代数表示 思考 为解决方程 x22 在有理数范围内无根的问题,数系从有理数扩充到实数;那么怎样 解决方程 x210 在实数系中无根的问题呢? 答案 设想引入。

【3.1数系的扩充 学案含答案】相关DOC文档
3.1 空间直角坐标系的建立-3.2 空间直角坐标系中点的坐标 学案(含答案)
第四章 数系的扩充与复数的引入 章末复习课时对点练(含答案)
第四章 数系的扩充与复数的引入 章末检测试卷(含答案)
《第3章 数系的扩充与复数的引入章末复习》课时对点练(含答案)
第五章 数系的扩充与复数的引入 章末复习试卷(含答案)
人教A版(新教材)必修第二册 7.1.1 数系的扩充和复数的概念 学案(含答案)
7.1.1数系的扩充和复数的概念 课时对点练(含答案)
§1 数系的扩充与复数的引入(二)课时作业(含答案)
§1 数系的扩充与复数的引入(一)课时作业(含答案)
7.1.1数系的扩充和复数的概念 课后作业(含答案)
7.1.1数系的扩充和复数的概念 同步练习(含答案)
第四章 数系的扩充与复数的引入 章末复习学案(含答案)
第三章 数系的扩充与复数的引入 章末复习 学案(含答案)
第三章 数系的扩充与复数 章末复习学案(含答案)
第五章 数系的扩充与复数的引入 章末复习学案(含答案)
第3章数系的扩充与复数的引入 章末复习学案(含答案)
§1 数系的扩充与复数的引入(一)学案(含答案)
§1 数系的扩充与复数的引入(二)学案(含答案)
3.1 数系的扩充 学案(苏教版高中数学选修2-2)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开