章末检测(三) (时间:120分钟满分:160分) 一、填空题(本大题共14小题,每小题5分,共70分) 1复数z是实数的充分而不必要条件为_ |z|z; z; z2是实数; z是实数 2在复平面上,一个正方形的三个顶点对应的复数分别是12i,2i,0,则第四个顶点对应的复数为_ 3z1(m2m1)
3.1 数系的扩充 学案苏教版高中数学选修2-2Tag内容描述:
1、章末检测(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1复数z是实数的充分而不必要条件为_|z|z; z;z2是实数; z是实数2在复平面上,一个正方形的三个顶点对应的复数分别是12i,2i,0,则第四个顶点对应的复数为_3z1(m2m1)(m2m4)i,mR,z232i,则“m1”是“z1z2”的_条件4下面是关于复数z的四个命题:p1:|z|2;p2:z22i;p3:z的共轭复数为1i;p4:z的虚部为1.其中的真命题为_5在复平面内,O是原点,对应的复数分别为2i,32i,15i,那么对应的复数为_6i是虚数单位,若abi(a,bR),则ab的值是_7已知f(n)ini。
2、章末检测试卷(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1i是虚数单位,复数_.答案12i解析12i.2已知a是实数,是纯虚数,则a_.答案1解析是纯虚数,则a10,a10,解得a1.3设复数z1,z2在复平面内的对应点关于虚轴对称,z12i,则z1z2_.答案5解析z12i在复平面内对应点(2,1),又z1与z2在复平面内的对应点关于虚轴对称,则z2的对应点为(2,1),则z22i,z1z2(2i)(2i)i245.4若(xi)iy2i,x,yR,则复数xyi_.答案2i解析(xi)iy2i,xii2y2i,y1,x2,xyi2i.5设a,b为实数,若复数1i,则a,b的值分别为_答案,解析1i,。
3、章末检测试卷(五)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若i为虚数单位,则复数z5i(34i)在复平面内对应的点所在的象限为()A第一象限 B第二象限C第三象限 D第四象限考点复数的乘除法运算法则题点运算结果与点的对应答案A2“复数z是实数”的充分不必要条件为()A|z|z BzCz2是实数 Dz是实数考点复数的概念题点复数的概念及分类答案A解析由|z|z可知z必为实数,但由z为实数不一定得出|z|z,如z2,此时|z|z,故“|z|z”是“z为实数”的充分不必要条件3已知a,bR,i是虚数单位若ai2bi,则(abi)2等于()A34i B34。
4、二、填空题:请将答案填在题中横线上学+科网13若实数,满足,为虚数单位,则_14设为虚数单位,若复数是纯虚数,则实数_15已知为虚数单位,则化简可得_16已知为复数的共轭复数,为虚数单位,若,则在复平面内复数对应的点为_三、解答题:解答应写出文字说明、证明过程或演算步骤17已知复数,其中为虚数单位,若为实数,求实数的值18已知为虚数单位(1)若复数,求;(2)若复数z满足,求19若复数满足,为虚数单位,求的取值范围20已知复数,其中为虚数单位(1)若复数在复平面内对应的点分别为,求向量对应的复数;(2)若复数满足,求复数。
5、第三章 数系的扩充与复数的引入3.1 数系的扩充和复数的概念1数系的扩充计数的需要自然数(正整数和零),负数,分数(分数集有理数集循环小数集),无理数(无理数集无限不循环小数集),虚数2复数的概念(1)复数的引入:为了解决这样的方程在实数系中无解的问题,我们引入一个新数,规定:,即使是方程的根;实数可以和数进行加法和乘法运算,且加法和乘法的运算律仍然成立在此规定下,实数与相加,结果记作;实数与相乘,结果记作;实数与实数和相乘的结果相加,结果记作由于加法和乘法的运算律仍然成立,从而这些运算的结果都可以写成。
6、3.1.1 数系的扩充和复数的概念,第三章 3.1 数系的扩充和复数的概念,学习目标 1.了解引进虚数单位i的必要性,了解数集的扩充过程. 2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 复数的概念及代数表示,思考,答案,答案 设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数.,为解决方程x22,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?,梳理,(1)复数 定义。
7、第三章 数系的扩充与复数的引入3.1 数系的扩充和复数的概念1数系的扩充计数的需要自然数(正整数和零),负数,分数(分数集有理数集循环小数集),无理数(无理数集无限不循环小数集),虚数2复数的概念(1)复数的引入:为了解决这样的方程在实数系中无解的问题,我们引入一个新数,规定:,即使是方程的根;实数可以和数进行加法和乘法运算,且加法和乘法的运算律仍然成立在此规定下,实数与相加,结果记作;实数与相乘,结果记作;实数与实数和相乘的结果相加,结果记作由于加法和乘法的运算律仍然成立,从而这些运算的结果都可以写成。
8、第第 3 章章 数系的扩充与复数的引入数系的扩充与复数的引入 章末复习章末复习 学习目标 1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复 数的相关运算 1复数的有关概念 (1)复数的概念:形如 abi(a,bR)的数叫做复数,其中 a,b 分别是它的实部和虚部若 b0,则 abi 为实数,若 b0,则 abi 为虚数,若 a0 且 b0,则 abi 为纯虚数 (2。
9、31 数系的扩充数系的扩充 学习目标 1.了解引进虚数单位 i 的必要性, 了解数集的扩充过程.2.理解在数系的扩充中由 实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法, 理解复数相等的 充要条件 知识点一 复数的概念及代数表示 思考 为解决方程 x22 在有理数范围内无根的问题,数系从有理数扩充到实数;那么怎样 解决方程 x210 在实数系中无根的问题呢? 答案 设想引入。