第2课时二次函数、二次方程及简单的一元二次不等式 学习目标理解和掌握二次函数的图象和性质,理解和掌握一元二次方程的相关知识并能熟练解出一元二次方程,借助于二次函数的图象会解简单一元二次不等式. 知识点一一元二次方程的根的判别式 一元二次方程ax2bxc0(a0),用配方法将其变形为2. (1)当b2
3.3.1 从函数观点看一元二次方程 学案含答案Tag内容描述:
1、第2课时二次函数、二次方程及简单的一元二次不等式学习目标理解和掌握二次函数的图象和性质,理解和掌握一元二次方程的相关知识并能熟练解出一元二次方程,借助于二次函数的图象会解简单一元二次不等式.知识点一一元二次方程的根的判别式一元二次方程ax2bxc0(a0),用配方法将其变形为2.(1)当b24ac0时,右端是正数.因此,方程有两个不相等的实数根:x1,2;(2)当b24ac0时,右端是零.因此,方程有两个相等的实数根:x1,2;(3)当b24ac0时,右端是负数.因此,方程没有实数根.由于可以用b24ac的取值情况来判定一元二次方程的根的情况.因此,把b2。
2、第2课时二次函数、二次方程及简单的一元二次不等式学习目标理解和掌握二次函数的图象和性质,理解和掌握一元二次方程的相关知识并能熟练解出一元二次方程,借助于二次函数的图象会解简单一元二次不等式.知识点一一元二次方程的根的判别式一元二次方程ax2bxc0(a0),用配方法将其变形为2.(1)当b24ac0时,右端是正数.因此,方程有两个不相等的实数根:x1,2;(2)当b24ac0时,右端是零.因此,方程有两个相等的实数根:x1,2;(3)当b24ac0时,右端是负数.因此,方程没有实数根.由于可以用b24ac的取值情况来判定一元二次方程的根的情况.因此,把b2。
3、1 2.3 二次函数与一元二次方程不等式二次函数与一元二次方程不等式 第第 1 课时课时 一元二次不等式及其解法一元二次不等式及其解法 学 习 目 标 核 心 素 养 1.掌握一元二次不等式的解法重点. 2.能根据三个二次之间的关系解决简单。
4、1 第第 2 课时课时 一元二次不等式的应用一元二次不等式的应用 学 习 目 标 核 心 素 养 1.掌握一元二次不等式的实际应用重点. 2.理解三个二次之间的关系. 3.会解一元二次不等式中的恒成立问题难点. 1.通过分式不等式的解法及不。
5、第一篇 集合与不等式专题1.05从函数的观点看一元二次方程和一元二次不等式【考试要求】1.会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系;2.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集;3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系【知识梳理】1.一元二次不等式只含有一个未知数,并且未知数的最高次数为2的整式不等式叫作一元二次不等式.2.三。
6、学习目标 1.从函数观点看一元二次方程了解函数的零点与方程根的关系.2.从函数观点看 一元二次不等式经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的 现实意义.3.借助一元二次函数的图象,了解.。
7、第 1 页(共 23 页)26.2 用函数观点看一元二次方程同步练习卷一选择题(共 8 小题)1二次函数 yax 2+bx+c(a 0,a、b、c 为常数)的图象如图所示,则方程ax2+bx+cm 有实数根的条件是( )Am4 Bm0 Cm5 Dm 62二次函数 yax 2+bx+c(a 0)的图象如图,则下列结论:ac0;方程ax2+bx+c0 的两根之和大于 0;y 随 x 的增大而增大;ab+c0其中正确的是( )A B C D3若关于 x 的一元二次方程(x2) (x 3)m 有实数根 x1、x 2,且 x1x 2,有下列结论: x12,x 23 m 二次函数 y(xx 1) (xx 2)+ m 的图象与 x 轴交点的坐标为(2,0)和(3,0)其中。
8、第 1 页(共 34 页)26.2 用函数观点看一元二次方程同步练习卷一选择题(共 7 小题)1若关于 x 的一元二次方程(x2) (x 3)m 有实数根 x1、x 2,且 x1x 2,有下列结论: x12,x 23 m 二次函数 y(xx 1) (xx 2)+ m 的图象与 x 轴交点的坐标为(2,0)和(3,0)其中,正确的结论是( )A B C D2已知二次函数 yx 24x +m 的图象与 x 轴交于 A、B 两点,且点 A 的坐标为(1,0) ,则线段 AB 的长为( )A1 B2 C3 D43如图,二次函数 yax 2+bx+c 图象的对称轴是直线 x 1,与 x 轴一个交点 A(3,0) ,则与 x 轴的另一个交点坐标是( )A 。
9、第 1 页(共 23 页)26.2 用函数观点看一元二次方程同步练习卷一选择题(共 13 小题)1已知抛物线 yx 2+bx+c 的部分图象如图所示,若 y 0,则 x 的取值范围是( )A1x4 B1x3 Cx1 或 x4 Dx 1 或 x32已知二次函数 ykx 27x7 的图象与 x 轴没有交点,则 k 的取值范围为( )Ak Bk 且 k0 Ck Dk 且 k03若函数 yx 22x +b 的图象与坐标轴有三个交点,则 b 的取值范围是( )Ab1 且 b0 Bb1 C0b1 Db14已知二次函数 yx 23x +m(m 为常数)的图象与 x 轴的一个交点为(1,0) ,则关于x 的一元二次方程 x23x+m 0 的两实数根是( )Ax 11,x 21 Bx 11,。
10、3.33.3 从函数观点看一元二次方程和一元二次不等式从函数观点看一元二次方程和一元二次不等式 3 3. .3.13.1 从函数观点看一元二次方程从函数观点看一元二次方程 学习目标 1.正确理解二次函数零点的概念.2.理解一元二次方程与二次函数的关系.3.掌握 图象法解一元二次方程 知识点一 二次函数的零点 1 定义: 一般地, 一元二次方程 ax2bxc0(a0)的根就是二次函数 yax2bx。