4.5 简单的三角恒等变换简单的三角恒等变换 最新考纲 考情考向分析 1.会用向量的数量积推导出两角差的余弦公式 2.会用两角差的余弦公式推导出两角差的正弦、 正切 公式 3.会用两角差的余弦公式推导出两角和的正弦、余 弦、正切公式,推导出二倍角的正弦、余弦、正切 公式,了解它们的内在联系 4.能
4.1正弦与余弦 课时练习含答案Tag内容描述:
1、 4.5 简单的三角恒等变换简单的三角恒等变换 最新考纲 考情考向分析 1.会用向量的数量积推导出两角差的余弦公式 2.会用两角差的余弦公式推导出两角差的正弦、 正切 公式 3.会用两角差的余弦公式推导出两角和的正弦、余 弦、正切公式,推导出二倍角的正弦、余弦、正切 公式,了解它们的内在联系 4.能运用上述公式进行简单的恒等变换(包括导出积 化和差、和差化积、半角公式,但对这三组公式不 要求记忆). 三角恒等变换是三角变换的工具, 主要 考查利用两角和与差的三角函数公式、 二倍角公式进行三角函数的化简与求 值, 重在考查化简、 。
2、第 28 课时 两角和与差的正弦、余弦课时目标1.掌握两角和的余弦,两角和与差的正弦公式2能熟练运用公式进行恒等变形识记强化cos( )coscos sin sinsin()sincos cossin课时作业一、选择题1cos cos sin sin 的值为 ( )512 12 512 12A. B012C. D132答案:A解析:由两角差的余弦公式,得 cos cos sin sin cos cos ,故512 12 512 12 (512 12) 3 12选 A.2已知 cos sin ,则 sin( )的值是( )( 6) 435 76A B.2 35 2 35C D.45 45答案:C解析:原方程可化为 cos sin ,32 32 45 3即 sin ,( 6) 45sin sin ,故选 C.( 76) ( 6) 453函数 f(x)cos cos 。
3、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.4.掌握正弦曲线、余弦曲线的性质知识点一正弦函数图象1正弦函数的图象叫做正弦曲线如图:2正弦曲线的作法(1)几何法借助三角函数线(2)描点法五点法用“五点法”画正弦曲线在0,2上的图象时所取的五个关键点为(0,0),(,0),(2,0)知识点二余弦函数图象1余弦函数的图象叫做余弦曲线如图。
4、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质一、选择题1符合以下三个条件:在上单调递减;以2为周期;是奇函数这样的函数是()Aysin x Bysin xCycos x Dycos x考点正弦、余弦函数性质的综合应用题点正弦、余弦函数性质的综合应用答案B解析在上单调递减,可以排除A,是奇函数可以排除C,D.2对于函数f(x)sin 2x,下列选项中正确的是()Af(x)在上是递增的Bf(x)的图象关于原点对称Cf(x)的最小正周期为2Df(x)的最大值为2考点正弦、余弦函数性质的综合应用题点正弦函数性质的综合应用答案B解析因为函数ysin x在上是递减的,。
5、4.3单位圆与正弦函数、余弦函数的基本性质44单位圆的对称性与诱导公式(一) 基础过关1cos 660的值为()AB.C D.解析cos 660cos(360300)cos 300cos(180120)cos 120cos(18060)cos 60.答案B2若sin()0,则在()A第一象限B第二象限C第三象限D第四象限解析sin()sin 0.cos()cos()cos 0,cos 0,为第二象限角答案B3已知sin,则sin的值为()A.BC.D解析sinsinsinsin.答案D4函数y2sin x的最小正周期为_。
6、31.2 两角和与差的正弦两角和与差的正弦、余弦余弦、正切公式正切公式(一一) 一、选择题 1下面各式中,不正确的是( ) Asin 4 3 sin 4cos 3 3 2 cos 4 Bcos 5 12 2 2 sin 3cos 4cos 3 Ccos 12 cos 4cos 3 6 4 Dcos 12cos 3cos 4 考点 和、差角公式的综合应用 题点 。
7、31.2 两角和与差的正弦两角和与差的正弦、余弦余弦、正切公式正切公式(二二) 一、选择题 1(1tan 18 )(1tan 27 )的值是( ) A. 3 B1 2 C2 D2(tan 18 tan 27 ) 考点 两角和与差的正切公式 题点 利用两角和与差的正切公式求值 答案 C 解析 (1tan 18 )(1tan 27 )1tan 18 tan 27 tan 18 tan 27 1t。
8、4.3单位圆与正弦函数、余弦函数的基本性质一、选择题1函数y的定义域是()A.(kZ)B.(kZ)C.(kZ)D2k,(2k1)(kZ)答案B解析由已知,得2kx2k(kZ)2函数ysin 2x的递减区间是()A.(kZ)B.(kZ)C.(kZ)D.(kZ)答案B解析由2k2x2k,kZ,得kxk,kZ,ysin 2x的递减区间是(kZ)3函数ylg的定义域为()A.B.,kZC.,kZDR答案C解析cos x0,cos x,2kx2k,kZ.函数ylg的定义域为,kZ.4函数y4sin x3在,上的递增区间为()A. B.C. D.答案B解析ysin x的递增区间就是y4sin x3的递增区间5y3cos x,x的最大。
9、2.2两角和与差的正弦、余弦函数一、选择题1sin 10cos 20sin 80sin 20等于()A B C. D.答案C解析sin 10cos 20sin 80sin 20sin 10cos 20cos 10sin 20sin(1020)sin 30,故选Ca.2在ABC中,A,cos B,则sin C等于()A. B C. D答案A解析sin Csin(AB)sin(AB)sin Acos Bcos Asin B(cos B).3已知0,又sin ,cos(),则sin 等于()A0 B0或C. D0或答案C解析0<。
10、2两角和与差的三角函数21两角差的余弦函数22两角和与差的正弦、余弦函数基础过关1设,若sin ,则cos=()A. B.CD解析coscos sin .答案A2化简sin(xy)sin(xy)cos(xy)cos(xy)的结果为()Asin 2xBcos 2xCcos 2xDsin 2x解析原式cos(xy)(xy)cos 2x,故选C.答案C3若锐角、满足cos ,cos(),则sin 的值是()A. B. C. D.解析cos ,cos(),、,sin ,sin().sin sin()sin()cos cos()sin .答案C4若cos(),则(sin sin )2(cos cos )2_。
11、4正弦函数和余弦函数的定义与诱导公式4.1单位圆与任意角的正弦函数、余弦函数的定义4.2单位圆与周期性学习目标1.理解任意角的正弦函数、余弦函数的定义及其应用.2.掌握同角的正弦、余弦函数值间的关系.3.理解周期函数的定义知识点一任意角的正弦函数和余弦函数1对于任意角,使角的顶点与原点重合,始边与x轴的非负半轴重合,终边与单位圆交于唯一的点P(u,v),那么点P的纵坐标v定义为角的正弦函数,记作vsin ;点P的横坐标u定义为角的余弦函数,记作ucos .2对于给定的角,点P的纵坐标v、横坐标u都是唯一确定的,所以正弦函数、余弦函数都。
12、3.1.3 二倍角的正弦、余弦、正切公式二倍角的正弦、余弦、正切公式 基础过关 1已知 cos x3 4,则 cos 2x( ) A1 4 B.1 4 C1 8 D.1 8 解析 cos 2x2cos2x12 3 4 2 11 8,故选 D. 答案 D 2cos275 cos215 cos 75 cos 15 的值等于( ) A 6 2 B3 2 C5 4 D1 3 4 解析 原。
13、4正弦函数和余弦函数的定义与诱导公式4.1单位圆与任意角的正弦函数、余弦函数的定义4.2单位圆与周期性一、选择题1已知是第二象限角,P(x,)为其终边上一点,且cos x,则x的值为()A. B C D答案D解析cos x,x0或2(x25)16,x0或x23,x0(是第二象限角,舍去)或x(舍去)或x.故选D.2若函数f(x)是以为周期的周期函数,且f1,则f的值是()A1 B1C1 D无法确定答案A解析fff1,故选A.3已知角的终边上一点的坐标为,则角的最小正值为()A. B. C. D.答案D解析sin ,cos ,角的终边在第四象限,角的最小正值为2.4若三角形的两内角,满足sin cos 0,则此三角。
14、3.1.2 两角和与差的正弦、余弦、正切公式两角和与差的正弦、余弦、正切公式(二二) 基础过关 1已知 , 为任意角,则下列等式: sin()sin cos cos sin ; cos()cos cos sin sin ; cos 2 sin ; tan() tan tan 1tan tan 其中恒成立的等式有( ) A2 个 B3 个 C4 个 D1 个 解析 恒成立 答案 B 2若 ta。
15、3.1.2 两角和与差的正弦、余弦、正切公式两角和与差的正弦、余弦、正切公式(一一) 基础过关 1sin 245 sin 125 sin 155 sin 35 的值是( ) A 3 2 B1 2 C1 2 D 3 2 解析 原式sin 65 sin 55 sin 25 sin 35 cos 25 cos 35 sin 25 sin 35 cos(35 25 )cos 60 1 2 答案 B 2若。
16、1.4.2 正弦函数、余弦函数的性质正弦函数、余弦函数的性质(一一) 基础过关 1函数 f(x)xsin x,xR( ) A是奇函数,但不是偶函数 B是偶函数,但不是奇函数 C既是奇函数,又是偶函数 D既不是奇函数,又不是偶函数 解析 由 f(x)xsin x(xsin x)f(x)可知 f(x)是奇函数 答案 A 2下列函数中,周期为 2 的是( ) Aysin x 2 Bysin 2x Cy|。
17、1.4.2 正弦函数、余弦函数的性质正弦函数、余弦函数的性质(二二) 基础过关 1函数 ysin 2x 的单调减区间是( ) A 22k, 3 22k (kZ) B k 4,k 3 4 (kZ) C2k,32k (kZ) D k 4,k 4 (kZ) 解析 令 22k2x 3 2 2k,kZ, 得 4kx 3 4 k,kZ, 则 ysin 2x 的单减区间是 4k, 3 4 k(kZ) 答。
18、 1.4 三角函数的图象与性质三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象正弦函数、余弦函数的图象 1用“五点法”作函数 y2sin x1 的图象时,首先应描出的五点的横坐标可以是 ( ) A0, 2, 3 2 ,2 B0, 4, 2, 3 4 , C0,2,3,4 D0, 6, 3, 2, 2 3 解析 由“五点法”可知选 A 答案 A 2方程 sin x x 10的根的个数。
19、4正弦函数和余弦函数的定义与诱导公式41单位圆与任意角的正弦函数、余弦函数的定义42单位圆与周期性基础过关1若sin cos 0,则在()A第一、二象限B第一、三象限C第一、四象限D第二、四象限答案B2已知是第二象限角,P(x,)为其终边上一点,且cos x,则x等于()A.BCD解析依题意得cos x0,由此解得x.答案D3下列函数中周期为的是()Aysin Bysin 2xCycos Dycos(4x)解析A中,f(x)sinsin(),不满足对任意x,f(x)f(x);B中,f(x)sin 2(x)sin (2x),不满足对任意x,f(x)f(x);C中,f(x)cos (x)cos(),不满足对任意x,f(x)f(x);D中,f(x)coscos(4x2)cos。
20、第四章第四章 锐角三角函数锐角三角函数 4.1 4.1 正弦与余弦正弦与余弦 基础导练基础导练 1.在 RtABC 中,C=90,BC=2,sin A=,则边 AC 的长是( ) A. B.3 C. D. 2.已知ABC 中,AC=4,BC=3,AB=5,则 sin A=( ) A. B. C. D. 3在 RtABC 中,C=90,sin A=,则 cos B 的值等于( 。