4 用向量讨论垂直与平行用向量讨论垂直与平行 第第 1 课时课时 用空间向量解决立体几何中的平行问题用空间向量解决立体几何中的平行问题 一、选择题 1.若直线 l 的方向向量为 a,平面 的法向量为 ,则能使 l 的是( ) A.a(1,0,0),(2,0,0) B.a(1,3,5),(1,0,1
4.3 向量平行的坐标表示 课时对点练含答案Tag内容描述:
1、 4 用向量讨论垂直与平行用向量讨论垂直与平行 第第 1 课时课时 用空间向量解决立体几何中的平行问题用空间向量解决立体几何中的平行问题 一、选择题 1.若直线 l 的方向向量为 a,平面 的法向量为 ,则能使 l 的是( ) A.a(1,0,0),(2,0,0) B.a(1,3,5),(1,0,1) C.a(0,2,1),(1,0,1) D.a(1,1,3),(0,3,1) 考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 D 解析 由 l,故 a,即 a 0,故选 D. 2.已知直线 l1的方向向量 a(2, 3, 5), 直线 l2的方向向量 b(4, x, y), 若两直线 l1l2, 则 x,y 的值分别是。
2、第2课时平面向量数量积的坐标运算一、选择题1已知a(3,1),b(1,2),则a与b的夹角为()A. B. C. D.考点平面向量夹角的坐标表示与应用题点求坐标形式下的向量的夹角答案B解析|a|,|b|,ab5.cosa,b.又a,b的夹角范围为0,a与b的夹角为.2设向量a(2,0),b(1,1),则下列结论中正确的是()A|a|b| Bab0Cab D(ab)b考点平面向量平行与垂直的坐标表示与应用题点向量垂直的坐标表示的综合应用答案D解析ab(1,1),所以(ab)b110,所以(ab)b.3已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A. B3 C D3考点平面向量投影的坐标表示与应用题点平面向。
3、2.2.2向量的正交分解与向量的直角坐标运算一、选择题1.已知向量a(1,2),b(1,0),那么向量3ba的坐标是()A.(4,2) B.(4,2) C.(4,2) D.(4,2)答案D解析3ba3(1,0)(1,2)(3,0)(1,2)(31,02)(4,2),故选D.2.已知ab(1,2),ab(4,10),则a等于()A.(2,2) B.(2,2) C.(2,2) D.(2,2)答案D3.已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则1,2的值分别为()A.2,1 B.1,2 C.2,1 D.1,2答案D解析由解得4.在ABCD中,已知(3,7),(2,3),对角线AC,BD相交于点O,则的坐标是()A. B.C. D.答案B解析()(2,3)(3,7),故选B.5.已知向量a(5,2),。
4、2.1.5向量共线的条件与轴上向量坐标运算一、选择题1.在ABC中,已知D是AB边上的一点,若,则等于()A. B. C. D.答案B解析A,B,D三点共线,1,.2.已知a,b是不共线的向量,a2b,a(1)b,且A,B,C三点共线,则实数的值为()A.1 B.2C.2或1 D.1或2考点平行向量基本定理及其应用题点利用平行向量基本定理求参数答案D解析因为A,B,C三点共线,所以存在实数k使k.因为a2b,a(1)b,所以a2bka(1)b.因为a与b不共线,所以解得2或1.3.设a,b不共线,2apb,ab,a2b,若A,B,D三点共线,则实数p的值是()A.2 B.1 C.1 D.2答案B解析ab,a2b,2ab.又A,B,D三。
5、24.2 平面向量数量积的坐标表示平面向量数量积的坐标表示、模模、夹角夹角 一、选择题 1已知 a(3,1),b(1,2),则 a 与 b 的夹角为( ) A. 6 B. 4 C. 3 D. 2 考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 B 解析 |a| 10,|b| 5,a b5. cosa,b a b |a|b| 5 10 5 2 2 . 又a,b 的夹。
6、23.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 23.3 平面向量的坐标运算平面向量的坐标运算 一、选择题 1已知 M(2,3),N(3,1),则NM 的坐标是( ) A(2,1) B(1,2) C(2,1) D(1,2) 考点 平面向量的正交分解及坐标表示 题点 平面向量的正交分解及坐标表示 答案 B 解析 NM (2,3)(3,1)(1,2) 2已知 a1 2b(1,2)。
7、2.1向量的概念及表示一、选择题1给出下列物理量:质量;速度;位移;力;路程;功;加速度其中是向量的有()A4个 B5个 C6个 D7个考点向量的概念题点向量的判定答案A解析速度、位移、力、加速度这4个物理量是向量,它们都有大小和方向2下列说法正确的是()A向量与是相等向量B共线的单位向量是相等向量C零向量与任一向量共线D两平行向量所在直线平行考点相等向量与共线向量题点相等向量与共线向量的性质和判定答案C解析向量与方向相反,不是相等向量,故A错;共线的单位向量可能是相等向量,也可能不是,故B错;零向量与任一向量共线,故C正确。
8、23.4 平面向量共线的坐标表示平面向量共线的坐标表示 一、选择题 1下列向量中,与向量 c(2,3)不共线的一个向量 p 等于( ) A(5,4) B. 1,3 2 C. 2 3,1 D. 1 3, 1 2 考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 A 解析 因为向量 c(2,3),对于 A,243570,所以 A 中向量与 c 不共线 2下列各组向量中,能作。
9、2.2.3用平面向量坐标表示向量共线条件一、选择题1.设kR,下列向量中,与向量a(1,1)一定不平行的向量是()A.b(k,k) B.c(k,k)C.d(k21,k21) D.e(k21,k21)答案C解析由向量共线的判定条件知,当k0时,向量b,c与a平行;当k1时,向量e与a平行.对任意kR,1(k21)1(k21)0,a与d不平行,故选C.2.已知向量a(1,0),b(0,1),ckab(kR),dab,如果cd,那么()A.k1且c与d同向B.k1且c与d反向C.k1且c与d同向D.k1且c与d反向考点向量共线的坐标表示的应用题点利用向量共线求参数答案D3.已知三点A(1,1),B(0,2),C(2,0),若和是相反向量,则D点坐标是()A.(1,。
10、2.3.2平面向量的坐标运算第1课时平面向量的坐标表示及坐标运算一、选择题1已知M(2,3),N(3,1),则的坐标是()A(2,1) B(1,2) C(2,1) D(1,2)考点平面向量的正交分解及坐标表示题点平面向量的正交分解及坐标表示答案B解析(2,3)(3,1)(1,2)2已知ab(1,2),ab(4,10),则a等于()A(2,2) B(2,2)C(2,2) D(2,2)考点平面向量坐标运算的应用题点利用平面向量的坐标运算求向量的坐标答案D3若向量a(1,1),b(1,1),c(4,2),则c等于()A3ab B3abCa3b Da3b考点平面向量的坐标运算的应用题点用坐标形式下的基底表示向量答案A解析设cxayb,则解得c3ab.4已知。
11、6.3.46.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示 1.下列各组向量中,能作为表示它们所在平面内所有向量的基底的是 A.e12,2,e21,1 B.e11,2,e24,8 C.e11,0,e20,1 D.e11,2,。
12、6平面向量数量积的坐标表示一、选择题1已知向量a(5,6),b(6,5),则a与b()A垂直 B不垂直也不平行C平行且同向 D平行且反向答案A解析ab56650,ab.2已知向量a(1,n),b(1,n),若2ab与b垂直,则|a|等于()A1 B. C2 D4答案C解析(2ab)b2ab|b|22(1n2)(1n2)n230,n23,|a|2.3若向量a(1,2),b(1,1),则2ab与ab的夹角等于()A B. C. D.答案C解析2ab2(1,2)(1,1)(3,3),ab(1,2)(1,1)(0,3),(2ab)(ab)9,|2ab|3,|ab|3.设所求两向量的夹角为,则cos ,又0,.4若a。
13、6 6. .3.23.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 6 6. .3.33.3 平面向量加平面向量加减运算的坐标表示减运算的坐标表示 1已知 M2,3,N3,1,则NM的坐标是 A2,1 B1,2 C2,1 D。
14、6 6. .3.53.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 1多选设向量 a2,0,b1,1,则下列结论中正确的是 Aab2 Ba b0 Cab Dabb 答案 AD 解析 ab22,故 A 正确,B,C 显然错误, ab1。
15、4平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示一、选择题1已知M(2,3),N(3,1),则的坐标是()A(2,1) B(1,2) C(2,1) D(1,2)考点平面向量的正交分解及坐标表示题点平面向量的正交分解及坐标表示答案B解析(2,3)(3,1)(1,2)2已知向量a(1,2),b(1,0),那么向量3ba的坐标是()A(4,2) B(4,2) C(4,2) D(4,2)答案D解析3ba3(1,0)(1,2)(3,0)(1,2)(4,2),故选D.3已知ab(1,2),ab(4,10),则a等于()A(2,2) B(2,2) C(2,2) D(2,2)答案D4已知两点A(4,1),B(7,3),则与向量同向的单位向量是()A. B.C. D.考点平面向量的坐标运算。
16、4.3向量平行的坐标表示一、选择题1下列向量中,与向量c(2,3)不共线的一个向量p等于()A(5,4) B.C. D.答案A解析因为向量c(2,3),对于A,243570,所以A中向量与c不共线2已知向量a(1,2),|b|4|a|,ab,则b可能是()A(4,8) B(8,4) C(4,8) D(4,8)答案D3已知三点A(1,1),B(0,2),C(2,0),若和是相反向量,则D点坐标是()A(1,0) B(1,0) C(1,1) D(1,1)答案C4下列各组向量中,能作为表示它们所在平面内所有向量的基底的是()Ae1(2,2),e2(1,1)Be1(1,2),e2(4,8)Ce1(1,0),e2(0,1)De1(1,2),e2考点平面向量共线的坐标表示题点向量共线的判定与证明。