13.3.2 等边三角形,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第2课时 含30角的直角三角形的性质,八年级数学上(RJ),1探索含30角的直角三角形的性质(重点) 2会运用含30角的直角三角形的性质进行有关的证明和计算(难点),导入新课,问题引入,问题1 如图,将两个相同的含3
4.4解直角三角形的应用ppt课件湘教版九年级上册Tag内容描述:
1、13.3.2 等边三角形,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第2课时 含30角的直角三角形的性质,八年级数学上(RJ),1探索含30角的直角三角形的性质(重点) 2会运用含30角的直角三角形的性质进行有关的证明和计算(难点),导入新课,问题引入,问题1 如图,将两个相同的含30角的三角尺摆放在一起,你能借助这个图形,找到RtABC的直角边BC与斜边AB之间的数量关系吗?,分离,拼接,A,C,B,问题2 将一张等边三角形纸片,沿一边上的高对折,如图所示,你有什么发现?,讲授新课,性质:,在直角三角形中,如果一个锐角等于30,那么它所。
2、11.2.1 三角形的内角,第十一章 三角形,导入新课,讲授新课,当堂练习,课堂小结,11.2 与三角形有关的角,第2课时 直角三角形的性质和判定,八年级数学上(RJ)教学课件,1.了解直角三角形两个锐角的关系.(重点),学习目标,2.掌握直角三角形的判定.(难点),3.会运用直角三角形的性质和判定进行相关计算.(难点),导入新课,在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就。
3、第1章 直角三角形,1.2 直角三角形的性质和判定(),第2课时 勾股定理的应用,目标突破,总结反思,第1章 直角三角形,知识目标,第2课时 勾股定理的应用,知识目标,1通过仿照“动脑筋”,建立直角三角形模型解决实际问题 2通过观察图形,结合转化思想,构造直角三角形应用勾股定理解决问题,目标突破,目标一 利用勾股定理解决实际问题,例1 教材“动脑筋”针对训练 如图124,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行多少米?,图124,第2课时 勾股定理的应用,解析根据“两点之间线段。
4、 3.5 3.5 相似三角形的应用相似三角形的应用 第第3 3章章 图形的相似图形的相似 教学目标教学目标 1.1.会应用相似三角形的性质和判定解决实际问题会应用相似三角形的性质和判定解决实际问题 2.2.利用相似三角形解决实际问题中不能直接测量的物利用相似三角形解决实际问题中不能直接测量的物 体的长度的问题,让学生体会数学转化的思想。体的长度的问题,让学生体会数学转化的思想。 重点:重点:运用。
5、28.2 解直角三角形及其应用,人教版 数学 九年级 下册,28.2.1解直角三角形,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角一般要满足50 75.现有一个长6m的梯子,问: (1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)? (2)当梯子底端距离墙面2.4m时,梯子与地面所成的角等于多少(精确到1)?这时人能够安全使用这个梯子吗?,1. 了解解直角三角形的意义和条件.,2. 理解直角三角形中的五个元素之间的联系.,素养目标,3. 能根据直角三角形中除直角以外的两个元素(至少有一个是边),解直角三角形.,利用计算器。
6、解直角三角形的应用,第三课时,仰角和俯角,铅直线,水平线,视线,视线,仰角,俯角,在进行测量时, 从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.,知识回顾:,例、学校操场上有一根旗杆,上面有一根升旗用的绳子(绳子足够长),王同学拿了一把卷尺,并且向数学老师借了一把含300的三角板去度量旗杆的高度。,(1)若王同学将旗杆上绳子拉成仰角为600,如图用卷尺量得BC=4米,则旗杆AB的高多少?,(2)若王同学分别在点C、点D处将旗杆上绳子分别拉成仰角为600、300,如图量出CD=8米,你能求出旗杆AB的长吗。
7、精锐教育1对3辅导讲义学员姓名: 学科教师:汪艳芬年 级:初三 辅导科目:数学授课日期时 间主 题第12讲-解直角三角形的应用学习目标1使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.教学内容回顾相似三角形知识。已知,如图,小明同学身高1.5米,经太阳光照射,在地面的影长2米,若此时测得一塔在同一地面的影长为60米,则塔高应为多少米?1.5m2mBEDFCA。
8、精锐教育辅导讲义学员姓名: 学科教师:徐泽文年 级:初三 辅导科目:数学授课日期时 间主 题第12讲-解直角三角形的应用学习目标1使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.教学内容回顾相似三角形知识。已知,如图,小明同学身高1.5米,经太阳光照射,在地面的影长2米,若此时测得一塔在同一地面的影长为60米,则塔高应为多少米?60m参考答案:45。
9、24.4.1 解直角三角形,第24章 解直角三角形,驶向胜利的彼岸,复习导入,1.在三角形中共有几个元素?2.直角三角形ABC中,C=90,a、b、c、A、B这五个元素间有哪些等量关系呢?,探索新知,1.解直角三角形,我们已掌握直角三角形的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素。,(1)概念:由已知元素求出未知元素的过程,叫做解直角三角形。,(2)思考:为什么要至少有一条边?,探索新知,2.已知两条边,求其余未知元素,例1 如图,一棵大树在一次强烈的地震中于离地面10米处折断倒。
10、第1章 直角三角形,1.1 直角三角形的性质和判定(),第2课时 含30角的直角三 角形的性质及应用,目标突破,总结反思,第1章 直角三角形,知识目标,第2课时 含30角的直角三角形的性质及应用,知识目标,1通过对含30角的直角三角形的短直角边和斜边长度的测量与数量关系的分析,理解并掌握“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半”的性质 2通过对直角三角形的短直角边与斜边的长度在数形结合上的分析,推导出“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30”,目标突破,目标一 理解。
11、,导入新课,讲授新课,当堂练习,课堂小结,28.2 解直角三角形及其应用,第二十八章 锐角三角函数,28.2.1 解直角三角形,1. 了解并掌握解直角三角形的概念; 2. 理解直角三角形中的五个元素之间的联系. (重点) 3. 学会解直角三角形. (难点),导入新课,(1) 三边之间的关系:a2+b2=_;,(2) 锐角之间的关系:A+B=_;,(3) 边角之间的关系:sinA=_,cosA=_,tanA=_.,如图,在RtABC中,共有六个元素(三条边,三个角), 其中C=90.,c2,90,复习引入,讲授新课,在图中的RtABC中, (1) 根据A75,斜边AB6,你能求出这个直角三角形的其他元素吗?,合作探究,75,。
12、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第1课时 解直角三角形的简单应用,1. 巩固解直角三角形相关知识. (重点) 2. 能从实际问题中构造直角三角形,从而把实际问 题转化为解直角三角形的问题,并能灵活选择三角函数解决问题(重点、难点),导入新课,情境引入,高跟鞋深受很多女性的喜爱,但有时候,如果鞋跟太高,也有可能“喜剧”变“悲剧”.,美国人体工程学研究人员卡特 克雷加文调查发现,70以上的女性喜欢穿鞋跟高度为6至7cm左右的高跟鞋. 但专家认为穿6cm以上的高跟鞋,腿肚、脚背等处的肌肉。
13、第 1 章 解直角三角形专题训练 解直角三角形应用中的基本模型 模型一 平行线型图图 11ZT11如图 11ZT1,有一张简易的活动小餐桌,现测得 OA OB30 cm, OC OD50 cm,桌面离地面的高度为 40 cm,则两条桌腿的张角 COD 的度数为_ 模型二 “一线三等角”型图2将一盒足量的牛奶按如图 11ZT2所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点 P 时停止倒入图是它的平面示意图,请根据图中的信息,求出容器内牛奶的高度(结果精确到 0.1 cm,参考数据: 1.73, 1.41)3 2图 11ZT2 模型三 “梯形及其高”的基本图形3某地的一座人行天。
14、 4.3 4.3 解直角三角形解直角三角形 第第4 4章章 锐角三角函数锐角三角函数 教学目标教学目标 通过综合运用勾股定理,直角三角形的两个锐角互余通过综合运用勾股定理,直角三角形的两个锐角互余 及锐角三角函数解直角三角形,逐步培养学生分析及锐角三角函数解直角三角形,逐步培养学生分析 问题、解决问题的能力问题、解决问题的能力 重点:重点:理解解直角三角形的概念;学会解直角三角形理解解直角三角形。
15、 4.4 4.4 解直角三角形的应用解直角三角形的应用 第第4 4章章 锐角三角函数锐角三角函数 重点难点重点难点 重点:重点:善于将某些实际问题中的数量关系,善于将某些实际问题中的数量关系, 归结为直角三角形元素之间的关系,从而归结为直角三角形元素之间的关系,从而 利用所学知识把实际问题解决利用所学知识把实际问题解决 难点:难点:根据实际问题构造合适的直角三角形根据实际问题构造合适的直角三角。