6.16.1 平面向量的概念平面向量的概念 6 6. .1.11.1 向量的实际背景与概念向量的实际背景与概念 6 6. .1.21.2 向量的几何表示向量的几何表示 6 6. .1.31.3 相等向量与共线向量相等向量与共线向量 基础达标,6.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐
4.4 向量的分解与坐标表示课后作业含答案Tag内容描述:
1、6.16.1 平面向量的概念平面向量的概念 6 6. .1.11.1 向量的实际背景与概念向量的实际背景与概念 6 6. .1.21.2 向量的几何表示向量的几何表示 6 6. .1.31.3 相等向量与共线向量相等向量与共线向量 基础达标。
2、6.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示 基础达标 一选择题 1.已知向量 a3,5,bcos ,sin ,且 ab,则 tan 等于 A.35 B.53 C.35 D.53 解析 由 ab,得 5cos 3sin 。
3、6.3.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 基础达标 一选择题 1.已知 a3,1,b1,2,则 a 与 b 的夹角为 A.6 B.4 C.3 D.2 解析 设 a,b 的夹角为 ,a 10,b 5,a b5. cos a。
4、5e2,2e15e2,a2e1.20能不能作为基底?答由于0与任何向量都是共线的,因此0不能作为基3平面向量的基底唯一吗?答不唯一,只要两个向量不共线,都可以作为平面的一组基预习导引1线性组合将一组向量的实数倍之和称为这些向量的线性组合比如,xe1ye2就是e1,e2的线性组合2定理3设e1,e2是平面上两个互相垂直的单位向量,则(1)平面上任意一个向量v都可以分解为e1,e2的线性组合:vxe1ye2,其中x,y是两个实数(2)两个向量uae1be2和vxe1ye2相等的充分必要条件是:ax且by.3平面向量的坐标运算(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),即两个向量和的坐标等于这两个向量相应坐标的和(2)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),即两个向量差的坐标等于这两个向量相应坐标的差(3)若a(x,y),R,则a(x,y),即实数与向量的积的坐标等于用这个实数乘。
5、6 6. .3.23.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 6 6. .3.33.3 平面向量加减运算的坐标表示平面向量加减运算的坐标表示 基础达标 一选择题 1.如果用 i,j 分别表示 x 轴和 y 轴方向上的单。