欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

4.4 向量的分解与坐标表示 学案含答案

6.3.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 6.3.3 平面向量加平面向量加、减运算的坐标表示减运算的坐标表示 学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量加、减运算 的坐标表示. 知识点一 平面向量的正交分解 把一个向量分解为两个互相垂直的向

4.4 向量的分解与坐标表示 学案含答案Tag内容描述:

1、6.3.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 6.3.3 平面向量加平面向量加、减运算的坐标表示减运算的坐标表示 学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量加、减运算 的坐标表示. 知识点一 平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解. 知识点二 平面向量的坐标表示 1.在平面直角坐标系中,设与 x 轴、y 轴方向相同的两个单位向量分别为 i,j,取i,j作为 基底.对于平面内的任意一个向量 a,由平面向量基本定理可知,有且只有一对实数 x,y, 使得 ax。

2、2.2.2向量的正交分解与向量的直角坐标运算学习目标1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一平面向量的正交分解如果基底的两个基向量e1,e2互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.知识点二平面向量的坐标表示(1)基底:在直角坐标系xOy内,分别取与x轴和y轴方向相同的两个单位向量e1,e2.这时,我们就在坐标平面内建立了一个正交基底e1,e2.这个基底也叫做直角坐标系xOy的基底.(2。

3、23.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 23.3 平面向量的坐标运算平面向量的坐标运算 学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘 向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来 知识点一 平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解 知识点二 平面向量的坐标表。

4、 3 向量的坐标表示和空间向量基本定理向量的坐标表示和空间向量基本定理 3.1 空间向量的标准正交分解与坐标表示空间向量的标准正交分解与坐标表示 3.2 空间向量基本定理空间向量基本定理 学习目标 1.了解空间向量基本定理.2.了解基底、标准正交基的概念.3.掌握空间向量的坐标 表示,能在适当的坐标系中写出向量的坐标. 知识点一 空间向量的坐标表示 空间向量的正交分解及其坐标表示 标准正交基 有公共起点 O 的三个两两垂直的单位向量,记作 i,j,k 空间直角坐标系 以 i,j,k 的公共起点 O 为原点,分别以 i,j,k 的方向为 x 轴,y 轴。

5、44向量的分解与坐标表示学习目标1.理解向量的线性组合及其意义,会用基表示向量.2.掌握向量的坐标表示及其坐标运算.3.掌握向量平行的坐标表示及其应用.4.理解并掌握平面向量基本定理知识链接1如图所示,e1,e2是两个不共线的向量,试用e1,e2表示向量,a.答通过观察,可得:2e13e2,e14e2,4e14e2,2e15e2,2e15e2,a2e1.20能不能作为基底?答由于0与任何向量都是共线的,因此0不能作为基3平面向量的基底唯一吗?答不唯一,只要两个向量不共线,都可以作为平面的一组基预习导引1线性组合将一组向量的实数倍之和称为这些向量的线性组合比如。

【4.4 向量的分解与坐标表示 学案含答案】相关DOC文档
2.2.2 向量的正交分解与向量的直角坐标运算 学案(含答案)
4.4 向量的分解与坐标表示 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开