欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

4.5.1 向量的数量积 学案含答案

第2课时平面向量数量积的坐标运算 学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直 知识点一平面向量数量积的坐标表示 若向量a(x1,y1)

4.5.1 向量的数量积 学案含答案Tag内容描述:

1、第2课时平面向量数量积的坐标运算学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直知识点一平面向量数量积的坐标表示若向量a(x1,y1),b(x2,y2).数量积abx1x2y1y2向量垂直abx1x2y1y20知识点二平面向量的模向量的模及两点间的距离向量模a(x,y)|a|以A(x1,y1),B(x2,y2)为端点的向量|知识点三向量的夹角设a,b都是非零向量,a(x1,y1),b(x2,y2),是a与b的夹角,则cos .。

2、 5.3 平面向量的数量积平面向量的数量积 最新考纲 考情考向分析 1.理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系. 3.掌握数量积的坐标表达式, 会进行平面向量 数量积的运算. 4.能运用数量积表示两个向量的夹角, 会用数 量积判断两个平面向量的垂直关系. 主要考查利用数量积的定义解决数量积的运 算、投影、求模与夹角等问题,考查利用数 量积的坐标表示求两个向量的夹角、模以及 判断两个平面向量的平行与垂直关系一般 以选择题、填空题的形式考查,偶尔会在解 答题中出现,属于中档题. 1向量的夹角 。

3、2.3.2向量数量积的运算律基础过关1设为两个非零向量a,b的夹角,已知对任意实数t,|bta|的最小值为1.()A若确定,则|a|唯一确定B若确定,则|b|唯一确定C若|a|确定,则唯一确定D若|b|确定,则唯一确定答案B解析|bta|2b22abtt2a2|a|2t22|a|b|cost|b|2.因为|bta|min1,所以|b|2(1cos2)1.所以|b|2sin21,所以|b|sin1,即|b|.即确定,|b|唯一确定2已知向量a,b,其中|a|,|b|2,且(ab)a,则向量a和b的夹角是()A. B. C. D答案A解析由题意知(ab)aa2ab2ab0,ab2,设a与b的夹角为,则cos,.3已知向量a,b的夹角为120,|a|1,|b|。

4、1 11.21.2 空间向量的数量积运算空间向量的数量积运算 1已知向量 a 和 b 的夹角为 120 ,且|a|2,|b|5,则(2ab) a 等于( ) A12 B8 13 C4 D13 答案 D 解析 (2ab) a2a2b a2|a|2|a|b|cos 120 2425 1 2 13. 2 已知两异面直线的方向向量分别为 a, b, 且|a|b|1, a b1 2, 则两直线的夹角。

5、2.4向量的数量积(二) 基础过关1.若a(2,1),b(1,1),则向量ab与ab的夹角的余弦值为()A. B. C. D.解析法一a(2,1),b(1,1),ab(1,2),ab(3,0),(ab)(ab)3,|ab|,|ab|3,ab与ab的夹角的余弦值为cos .法二a(2,1),b(1,1),|a|,|b|,(ab)(ab)a2b2|a|2|b|2523,ab211,|ab|,|ab|3,ab与ab的夹角的余弦值为cos .答案C2.已知向量a(1,2),b(2,3).若向量c满足(ca)b,c(ab),则c()A. B.C. D.解析设c(x,y),则ca(x1,y2),又(ca)b,2(y2)3(x1)0.又c(a。

6、2.4向量的数量积(一) 基础过关1.已知向量a,b和实数,下列选项中错误的是()A.|a|2a2 B.|ab|a|b|C.(ab)ab D.|ab|a|b|解析选项B中,|ab|a|b|cos |,其中为a与b的夹角.答案B2.已知菱形ABCD的边长为a,ABC60,则等于()A.a2 B.a2 C.a2 D.a2解析由菱形ABCD的边长为a,ABC60可知BAD18060120,故()()2aacos 120a2a2.答案D3.已知|a|2,|b|3,a与b的夹角为120,则ab_.解析ab|a|b|cos 120233.。

7、6.2.4 向量的数量积向量的数量积 A 组 素养自测 一选择题 1已知ABC 中,ABa,ACb,若 a b0,则ABC 是 A钝角三角形 B直角三角形 C锐角三角形 D任意三角形 2对于向量 abc 和实数 ,下列命题中真命题是 A若 。

8、5从力做的功到向量的数量积学习目标1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功.2.掌握平面向量数量积的定义,理解其几何意义.3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.4.掌握平面向量数量积的运算律及常用的公式知识点一两向量的夹角1.夹角:已知两个非零向量a和b,作a,b,则AOB(0180)叫作向量a与b的夹角(如图所示)当0时,a与b同向;当180时,a与b反向2垂直:如果a与b的夹角是90,我们说a与b垂直,记作ab.规定零向量可与任一向量垂直知识点二平面向量数量积的物理背景及其定义1数量。

9、24.2 平面向量数量积的坐标表示平面向量数量积的坐标表示、模模、夹角夹角 学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量 数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据 向量的坐标求向量的夹角及判定两个向量垂直 知识点一 平面向量数量积的坐标表示 设非零向量 a(x1,y1),b(x2,y2),a 与 b 的夹角。

10、 2.4 平面向量的数量积平面向量的数量积 24.1 平面向量数量积的物理背景及其含义平面向量数量积的物理背景及其含义 学习目标 1.了解平面向量数量积的物理背景, 即物体在力 F 的作用下产生位移 s 所做的功. 2.掌握平面向量数量积的定义,理解其几何意义.3.会用两个向量的数量积求两个向量的夹角 以及判断两个向量是否垂直.4.掌握平面向量数量积的运算律及常用的公式 知识点一 平面向量数量积。

11、2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律一、选择题1.已知|a|3,|b|4,且a与b的夹角150,则ab等于()A.6 B.6 C.6 D.6答案C2.已知|a|9,|b|6,ab54,则a与b的夹角为()A.45 B.135 C.120 D.150答案B解析cos ,又0180,135.3.已知|a|2,|b|3,|ab|,则|ab|等于()A. B. C. D.答案A解析因为|ab|219,所以a22abb219,所以2ab19496.于是|ab|.4.若|a|2,|b|4,向量a与向量b的夹角为120,则向量a在向量b方向上的正射影的数量等于()A.3 。

12、第2课时向量平行的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法知识点向量平行的坐标表示1向量平行的坐标表示(1)条件:a(x1,y1),b(x2,y2),a0.(2)结论:如果ab,那么x1y2x2y10;如果x1y2x2y10,那么ab.2若,则P与P1,P2三点共线(1)当(0,)时,P位于线段P1,P2的内部,特别地,当1时,P为线段P1P2的中点(2)当(,1)时,P在线段P1P2的延长线上(3)当(1,0)时,P在线段P1P2的反向延长线上1若向量a(x1,y1),b(x2,y2),且ab,则.()提示当y1y20时不成立2若向量a。

13、2.3.3向量数量积的坐标运算与度量公式学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标运算设a(a1,a2),b(b1,b2),则(1)aba1b1a2b2,即两个向量的数量积等于相应坐标乘积的和.(2)abab0a1b1a2b20.知识点二向量模的坐标表示及两点间距离公式(1)向量的长度公式:设a(a1,a2),则|a|.(2)两点间距离公式:若A(x1,y1),B(x2,y2),则|.知识点三。

14、6平面向量数量积的坐标表示学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模.3.能根据向量的坐标求向量的夹角及判定两个向量垂直知识点一平面向量数量积的坐标表示设a(x1,y1),b(x2,y2),则abx1x2y1y2.这就是说,两个向量的数量积等于相应坐标乘积的和知识点二平面向量模的坐标形式及两点间的距离公式向量模长a(x,y)|a|以A(x1,y1),B(x2,y2)为端点的向量|知识点三向量夹角的坐标表示设非零向量a(x1,y1),b(x2,y2),a与b的夹角为,则(1)cos .(2)abab0x。

15、2.4向量的数量积第1课时向量的数量积一、选择题1已知|a|3,|b|4,且a与b的夹角150,则ab等于()A6 B6 C6 D6考点平面向量数量积的运算性质与法则题点数量积运算与求值答案C2已知a,b方向相同,且|a|2,|b|4,则|2a3b|等于()A16 B256 C8 D64考点平面向量数量积的应用题点利用数量积求向量的模答案A解析|2a3b|24a29b212ab1614496256,|2a3b|16.3设非零向量a,b,c满足|a|b|c|,abc,则a与b的夹角为()A150 B120 C60 D30考点平面向量数量积的应用题点利用数量积求向量的夹角答案B解析由|a|b|c|且abc,得|ab|b|,平方得|a|2|b|22a。

16、23.2向量数量积的运算律学习目标1.掌握平面向量数量积的运算律及常用的公式.2.会利用向量数量积的有关运算律进行计算或证明知识点一平面向量数量积的运算律类比实数的运算律,判断下表中的平面向量数量积的运算律是否正确.运算律实数乘法向量数量积判断正误交换律abbaabba正确结合律(ab)ca(bc)(ab)ca(bc)错误分配律(ab)cacbc(ab)cacbc正确消去律abbc(b0)acabbc(b0)ac错误知识点二平面向量数量积的运算性质类比多项式乘法的乘法公式,写出下表中的平面向量数量积的运算性质.多项式乘法向量数量积(ab)2a22abb2(ab)2a22abb2(ab)2a22abb2(ab)2。

17、2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律学习目标1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功.2.掌握平面向量数量积的定义,理解其几何意义.3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.4.掌握平面向量数量积的运算律及常用的公式.知识点一向量的夹角两个向量夹角的定义(1)已知两个非零向量a,b,作a,b,则AOB称作向量a和向量b的夹角,记作a,b,并规定它的范围是0a,b.在这个规定下,两个向量的夹角被唯一确定了,并且有a,bb,a.(2)当a,b时,我。

18、2.4向量的数量积第1课时向量的数量积学习目标1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功.2.掌握平面向量数量积的定义和运算律,了解其几何意义.3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.4.掌握平面向量数量积的运算律及常用的公式知识点一平面向量的数量积1已知两个非零向量a和b,它们的夹角是,我们把数量|a|b|cos 叫做向量a与b的数量积(或内积),记作ab,即ab|a|b|cos .2规定:零向量与任一向量的数量积为0.特别提醒:两个向量的数量积是一个数量,而不是向量,其大小与两个向量的。

19、45向量的数量积45.1向量的数量积基础过关1已知a、b为单位向量,其夹角为60,则(2ab)b等于()A1B0C1D2答案B解析因为a、b为单位向量,且其夹角为60,所以ab11cos60,(2ab)b2abb2210.2已知|a|9,|b|6,ab54,则a与b的夹角为()A45 B135C120D150答案B解析cos,0180,135.3下列命题中正确的是()A|ab|a|b|BabbaC(a)ba(b)D非零向量a与b的夹角余弦值为答案D解析根据向量的数。

20、45向量的数量积45.1向量的数量积学习目标1.理解向量数量积的含义及其物理意义,体会向量数量积与向量投影的关系.2.能正确熟练地应用向量数量积的定义、运算律进行运算知识链接1如图,一个物体在力F的作用下产生位移s,且力F与位移s的夹角为,那么力F所做的功W是多少?答W|F|s|cos.2向量的数量积与数乘向量的区别是什么?答向量的数量积ab是一个实数,不考虑方向;数乘向量a是一个向量,既有大小,又有方向预习导引1两个向量的夹角规定a,b为a,b之间所夹的最小的非负角,取值范围规定为0,2向量的数量积定义|a|b|cosa,b叫做向量a和b的数。

【4.5.1 向量的数量积 学案含答案】相关DOC文档
高考数学一轮复习学案:5.3 平面向量的数量积(含答案)
《2.3.2 向量数量积的运算律》同步练习(含答案)
1.1.2 空间向量的数量积运算 同步练习(含答案)
2.4 向量的数量积(二)同步练习(含答案)
2.4 向量的数量积(一)同步练习(含答案)
6.2.4向量的数量积 同步练习(含答案)
§5 从力做的功到向量的数量积 学案(含答案)
2.4.2 平面向量数量积的坐标表示、模、夹角 学案(含答案)
2.4.1 平面向量数量积的物理背景及其含义 学案(含答案)
2.4向量的数量积(第2课时)向量平行的坐标表示 学案(含答案)
2.3.3 向量数量积的坐标运算与度量公式 学案(含答案)
§6 平面向量数量积的坐标表示 学案(含答案)
《2.4向量的数量积(第1课时)向量的数量积》课时对点练(含答案)
2.3.2 向量数量积的运算律 学案(含答案)
2.3.1 向量数量积的物理背景与定义-2.3.2 向量数量积的运算律 学案(含答案)
2.4向量的数量积(第1课时)向量的数量积 学案(含答案)
《4.5.1 向量的数量积》课后作业(含答案)
4.5.1 向量的数量积 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开