欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

5.2二次函数的图像和性质2ppt课件

1.2.1 二次函数的图象和性质,第1章 二次函数,【学习目标】 1会用描点法画函数yax2(a0)的图象,并根据图象认识、理解和掌握其性质 2体会数形结合的转化,能用yax2(a0)的图象和性质解决简单的实际问题 【学习重点】 理解并掌握图象的性质,会画yax2(a0)的图象 【学习难点】 二次函

5.2二次函数的图像和性质2ppt课件Tag内容描述:

1、1.2.1 二次函数的图象和性质,第1章 二次函数,【学习目标】 1会用描点法画函数yax2(a0)的图象,并根据图象认识、理解和掌握其性质 2体会数形结合的转化,能用yax2(a0)的图象和性质解决简单的实际问题 【学习重点】 理解并掌握图象的性质,会画yax2(a0)的图象 【学习难点】 二次函数图象及性质探究过程和方法的体会教学过程,教学目标,1什么是二次函数?,二次函数的定义:如果函数的表达式是自变量的二次多项式,那么,这样的函数称为二次函数,它的一般形式是 yax2bxc(a,b,c是常数,a0),3描点法画函数图象一般步骤是什么?,列表,描点,。

2、第2课时二次函数y=a(x-h)2与y=a(x-h)2+k的图像和性质知识点 1二次函数y=ax2+k的图像和性质1.二次函数y=x2-1的图像是一条,它的开口方向,对称轴是,顶点坐标是,当x=时,函数y取得最值,可见函数y=x2-1的图像是由函数y=x2的图像向平移个单位长度得到的.2.2018淮安 将二次函数y=x2-1的图像向上平移3个单位长度,得到的图像所对应的函数表达式是.3.抛物线y=ax2+c的顶点坐标是(0,2),且形状及开口方向与抛物线y=-12x2相同,则a,c的值分别为()A.-12,-2 B.-12,2C.12,2 D.12,-24.关于二次函数y=-2x2+3,下列说法中正确的是()A.图像的开口向上B.当x-1时,y随。

3、,导入新课,讲授新课,当堂练习,课堂小结,第2课时 二次函数y=a(x-h)2和y=a(x-h)2+k的图像和性质,30.2 二次函数的图像和性质,第三十章 二次函数,学习目标,1.会用描点法画出y=a(x-h)2和y=a(x-h)2+k (a 0)的图像. 2.掌握二次函数y=a(x-h)2和y=a(x-h)2+k (a 0)的图像的性质并会应用.(重点) 3.理解二次函数y=a(x-h)2和y=a(x-h)2+k (a 0)与y=ax2 (a 0)之间的联系.(难点),导入新课,复习引入,向上,向下,y轴(直线x=0),y轴(直线x=0),(0,c),(0,c),当x0时,y随x增大而增大.,当x0时,y随x增大而减小.,x=0时,y最小值=c,x=0时,y最大值=c,问题1。

4、30.2 二次函数的图像和性质,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次函数y=ax的图像和性质,第三十章 二次函数,学习目标,1.正确理解抛物线的有关概念.(重点) 2.会用描点法画出二次函数y=ax的图像,概括出图像的特点.(难点) 3.掌握形如y=ax的二次函数图像的性质,并会应用.(难点),导入新课,情境引入,讲授新课,例1 画出二次函数y=x2的图像.,9,4,1,0,1,9,4,典例精析,1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:,2. 描点:根据表中x,y的数值在坐标平面中描点(x,y),3. 连线:如图,再用平滑曲线顺次连。

5、第3课时二次函数y=ax2+bx+c的图像和性质知识点 1将二次函数的一般式y=ax2+bx+c配方成顶点式1.将二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是()A.y=(x-1)2+2 B.y=(x-1)2+3C.y=(x-2)2+2 D.y=(x-2)2+42.已知二次函数y=0.5x2-x-0.5,求其顶点坐标.小明的计算结果与其他同学的不同,请你帮他检查一下,在标出的几个步骤中开始出现错误的是第几步,请写出此题正确的求解过程.小明的计算过程:解:y=0.5x2-x-0.5=x2-2x-1=x2-2x+1-1-1=(x-1)2-2,顶点坐标是(1,-2).知识点2二次函数y=ax2+bx+c的图像和性质3.关于抛物线y=x2-2x+1,下列说法错误的是。

6、30.2第1课时二次函数y=ax2的图像和性质知识点二次函数y=ax2的图像和性质命题角度1二次函数y=ax2的图像1.(1)函数y=5x2的图像的开口向,对称轴是,顶点坐标是.(2)函数y=-14x2的图像的开口向,对称轴是,顶点坐标是.2.二次函数y=(k+1)x2的图像如图30-2-1所示,则k的取值范围为.图30-2-13.指出下列抛物线的开口方向、对称轴及顶点坐标.抛物线y=3x2y=-4x2y=34x2y=-13x2开口方向对称轴顶点坐标4.已知二次函数y=12x2.(1)根据下表给出的x值,求出对应的y值后填写在表中;x-3-2-10123y=12x21292(2)在给出的平面直角坐标系(如图30-2-2)中画出函数y=12x2的图。

7、04 二次函数 yax 2bx c 的图像和性质高中必备知识点 1:二次函数图像的伸缩变换问题 函数 yax 2与 yx 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出 y2x 2,y 1x2,y 2x 2 的图象,通过这些函数图象与函数 yx 2 的图象之间的关系,推导出函数 yax 2 与 yx 2 的图象之间所存在的关系先画出函数 yx 2,y 2x 2 的图象先列表:x 3 2 1 0 1 2 3 x2 9 4 1 0 1 4 9 2x2 18 8 2 0 2 8 18从表中不难看出,要得到 2x2 的值,只要把相应的 x2 的值扩大两倍就可以了再描点、连线,就分别得到了函数 yx 2,y 2x 2 的图象(如图 21 所示。

8、 知识回顾知识回顾: : 二次函数二次函数y=ax 的图象及其特点?的图象及其特点? 1、顶点坐标?、顶点坐标? (0,0) 2、对称轴?、对称轴? y轴(直线轴(直线x=0) 3、图象具有以下特点:、图象具有以下特点: 一般地,二次函数一般地,二次函数y=ax ( a0 )的图象是一条抛物线;的图象是一条抛物线; 当当a0 时,抛物线开口时,抛物线开口向上向上,顶点是抛物线上的,顶点。

9、第5课时二次函数y=ax2+bx+c的图像和性质知识点 1二次函数y=ax2+bx+c的顶点式1.2018山西 用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式为()A.y=(x-4)2+7 B.y=(x-4)2-25C.y=(x+4)2+7 D.y=(x+4)2-252.2017姜堰区月考 把二次函数y=(x-2)2+1化为y=x2+bx+c的形式,其中b,c为常数,则b+c=.3.若抛物线y=2x2+bx+3的对称轴是直线x=-1,则b=.知识点 2二次函数y=ax2+bx+c的图像和性质4.写出抛物线y=x2-2x-2的性质:开口方向为,对称轴为,顶点坐标是,在对称轴左侧,y随x的增大而,当x=时,函数取得最值为.5.抛物线y=x2-4x-3的顶点坐标为()A.(2,-7) B.(2,7)。

10、5.2第1课时二次函数y=ax2的图像和性质知识点 1二次函数y=ax2的图像的画法1.教材“操作与思考”变式 用描点法画出二次函数y=2x2的图像.解:(1)列表:恰当地选取自变量x的几个值,计算函数y对应的值.x-2-1012y(2)描点:以表中各对x,y的值作为点的,在图5-2-1的平面直角坐标系中描出对应的点.(3)连线:用平滑的顺次连接所描出的各点.图5-2-12.下列图像中,是二次函数y=x2的图像的是()图5-2-2知识点 2二次函数y=ax2的图像和性质3.教材练习第2题变式 二次函数y=-3x2的图像的开口方向为,顶点坐标是,对称轴是,当x0时,y随x的增大而;当x=时,y有最值是.4.下。

11、第2课时二次函数y=ax2+k的图像和性质知识点 1二次函数y=ax2+k与y=ax2的图像关系1.将抛物线y=x2向上平移2个单位长度后所得的抛物线的函数表达式为()A.y=x2+2 B.y=x2-2C.y=(x+2)2 D.y=(x-2)22.教材练习第1题变式 如果将抛物线y=x2+2向下平移1个单位长度,那么所得新抛物线的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2C.y=x2+1 D.y=x2+33.抛物线y=3x2-5可以看成是由抛物线y=3x2向平移个单位长度得到的.4.将抛物线y=ax2+c向下平移7个单位长度,得到抛物线y=-2x2,则a=,c=.知识点 2二次函数y=ax2+k的图像和性质5.写出下列抛物线的开口方向、对称轴。

12、九年级(下册),作 者:熊诚燕(连云港市新海实验中学),初中数学,5.2 二次函数的图像和性质(4),函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,5.2 二次函数的图像和性质(4),(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,5.2 二次函数的图像和性。

13、九年级(下册),作 者:徐 进(常州市北环中学),初中数学,5.2 二次函数的图像和性质(3),你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,5.2 二次函数的图像和性质(3),(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,5.2 二次函数的图像和性质(3),(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数y。

14、5.2 二次函数的图像和性质(1),九年级(下册),作 者:张 玲 (连云港市新海实验中学),初中数学,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,5.2 二次函数的图像和性质(1),例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,5.2 二次函数的图像和性质(1),观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,5.2 二次函数的图像和性质(1),例2 画出yx2图像。

15、第22章:二次函数,人教版九年级上册,22.1 二次函数的图像和性质,22.1.1 二次函数,学习目标,1.理解二次函数的概念,会根据给出的函数解析式判断其是否为二次函数。 2.通过探索具体问题中的数量关系和变化规律,体会二次函数是刻画现实世界中数量关系的一个有效的数学模型。 3.会列出实际问题中的二次函数关系,并能够确定其自变量的取值范围。,在某变化过程中的两个变量x、y,当变量x在某个范围内取一个确定的值,另一个变量y总有唯一的值与它对应。这样的两个变量之间的关系我们把它叫做函数关系。对于上述变量x 、y,我们把y叫x的函数。 。

16、5.2 二次函数的图像和性质(2),九年级(下册),作 者:徐 进(常州市北环中学),初中数学,请在同一坐标系中画出函数 和 、 和 的图像,画一画,5.2 二次函数的图像和性质(2),函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,5.2 二次函数的图像和性质(2),这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,5.2 二次函数的图像和性。

17、,苏科数学,5.2 二次函数的图像和性质,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,例2 画出yx2图像,画一画,观察函数yx2图像,说出图像的特征,抛物线关于y轴对称,当x0时,y随x增大而减小,抛物线开口向下,当x0时,y随x增大而增大,图像有最高点,过(0。

18、,苏科数学,5.2 二次函数的图像和性质,函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,y x22x3, (x1)22,由活动一可知:函数y (x1)22的图像可以看成yx2平移得到,即y x22x3是函数yx2先向左平移一个。

19、,苏科数学,5.2 二次函数的图像和性质,你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数yx21的图像有哪些性质?,猜想:函数yx22的图像和y=x2的图像的位置有何关系?函数yx22的图像有哪些性质?,探索。

20、,苏科数学,5.2 二次函数的图像和性质,请在同一坐标系中画出函数 和 、 和 的图像,画一画,函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,1二次函数yax的图像是一条抛物线,抛物线的顶点在原点,对称轴为y轴,2当a0时,抛物线的开口向上,顶点是抛物线的最低点,3当a0时,抛物。

【5.2二次函数的图像和性质2ppt课件】相关PPT文档
湘教版九年级数学下册1.2.1二次函数的图象和性质课件(19张ppt)
冀教版九年级数学下册《30.2(第1课时)二次函数y=ax2的图像和性质》课件
1.2二次函数的图像(2)ppt课件 (共18张PPT)
5.2二次函数的图像和性质(4)同步课件(连云港市新海实验中学)
5.2二次函数的图像和性质(3)同步课件(连云港市新海实验中学)
5.2二次函数的图像和性质(1)同步课件(连云港市新海实验中学)
22.1《二次函数的图像和性质》课件
5.2二次函数的图像和性质(2)同步课件(连云港市新海实验中学)
5.2二次函数的图像和性质(1)ppt课件
5.2二次函数的图像和性质(4)ppt课件
5.2二次函数的图像和性质(3)ppt课件
5.2二次函数的图像和性质(2)ppt课件
【5.2二次函数的图像和性质2ppt课件】相关DOC文档
30.2(第3课时)二次函数y=ax2+bx+c的图像和性质 同步分层训练(含答案)
30.2(第1课时)二次函数y=ax2的图像和性质 同步分层训练(含答案)
2019年初升高数学衔接之二次函数y=ax2+bx+c的图像和性质
5.2(第5课时)二次函数y=ax2+bx+c的图像和性质 同步分层训练(含答案)
5.2(第1课时)二次函数y=ax2的图像和性质 同步分层训练(含答案)
5.2(第2课时)二次函数y=ax2+k的图像和性质 同步分层训练(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开