欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

5.2 频数直方图 同步教案湘教版八年级数学下册

14 角平分线的性质教学目标:1理解并掌握角平分线的性质及判定;(重点)2能够对角平分线的性质及判定进行简单应用(难点)教学过程:一、情境导入在 S 区有一个集贸市场 P,它建在公路与铁路所成角的平分线上,要从 P 点建两条路,一条到公路,一条到铁路问题 1:怎样修建道路最短?问题 2:往哪条路走更

5.2 频数直方图 同步教案湘教版八年级数学下册Tag内容描述:

1、14 角平分线的性质教学目标:1理解并掌握角平分线的性质及判定;(重点)2能够对角平分线的性质及判定进行简单应用(难点)教学过程:一、情境导入在 S 区有一个集贸市场 P,它建在公路与铁路所成角的平分线上,要从 P 点建两条路,一条到公路,一条到铁路问题 1:怎样修建道路最短?问题 2:往哪条路走更近呢?二、合作探究探究点一:角平分线上的点到角两边的距离相等【类型一】 利用角平分线的性质求线段长如图,在 ABC 中, C90, AC BC, BAC 的平分线 AD 交 BC 于 D, DE AB 于E,若 AB7cm,则 DBE 的周长是_解析:在 ABC 中, C90, AC B。

2、平面直角坐标系教学目标:1理解有序数对的意义,能用有序数对表示实际生活中物体的位置;2理解平面直角坐标系的相关概念;3在给定的平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置;(重点)4理解每个象限及坐标轴上的点的特征(难点)教学过程:一、情境导入我们已经学过了数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图那么,如何确定平面内点的位置呢?二、合作探究探究点一:有序数对如图是某教室学生座位的平面图:(1)请说出王明和陈帅的座位位置;(2)若用(3,2)表示第。

3、一次函数教学目标:1理解一次函数、正比例函数的概念;(重点)2根据所给条件写出一次函数关系的表达式(难点)教学过程:一、情境导入鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;大约 128 天后,人们在 2.56 万千米外的澳大利亚发现了它(1)这只百余克重的小鸟大约平均每天飞行多少千米?(2)这只燕鸥飞行一个半月(一个月按 30 天计算)的行程大约是多少千米?(3)这只燕鸥的行程 y(单位:千米)与飞行时间 x(单位:天)之间有什么关系?二、合作探究探究点一:一次函数的概念【类型一】 一次函数的识别下列函数是一次函数的是( )A y8 x B y8xC 。

4、2.1.1 多边形的内角教学目标:1了解多边形及其相关概念;2熟练运用多边形内角和公式进行简单计算(重点)教学过程:一、情境导入小学时我们学习过多边形,对它有了初步的了解什么是多边形的内角,外角,对角线,如何计算对角线的条数,如何用字母表示它;三角形的内角和是 180,你想知道任意一个多边形的内角和是多少度吗?今天,我们就来探究一下多边形的内角和如何计算二、合作探究探究点一:多边形及其有关概念【类型一】 多边形的定义及概念下列说法中,正确的有( )(1)三角形是边数最少的多边形;(2)由 n 条线段连接起来组成的图形叫多边。

5、中心对称及其性质教学目标:1掌握中心对称和中心对称图形的概念和基本性质;(重点)2会运用中心对称的性质作图(难点)教学过程:一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元 6世纪如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称的识别下列各组中的 ABC与 A B C是否成中心对称?解析:中,找不到一个点,使其中一个三角形绕该点旋转 180后与另一个三角形重合, ABC与 A B C不成中心对称;中,设点 C是对称中心,发现 CA绕点 C旋转 180到达 C A, CB绕点 C旋转 180到达 C B,点 A。

6、2.1.2 多边形的外角教学目标:1理解和掌握多边形外角和定理的推导过程;(重点)2了解四边形的不稳定性及在生活和生产中的利与弊;3多边形内角和、外角和定理的综合运用(难点)教学过程:一、情境导入清晨,小明沿一个五边形广场的周围小跑,按逆时针方向跑步(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们(2)他每跑完一圈,身体转过的角度之和是多少?二、合作探究探究点一:多边形的外角和定理【类型一】 利用多边形的外角和定理求不规则图形的角度如图, A B C D E F G H 的度数为( )A90 B180 C270 D360解析:。

7、函数的表示法教学目标:1了解函数的三种不同的表示方法;(重点)2在实际情境中,会根据不同的需要,选择恰当的函数的表示方法;(重点)3函数三种表示方法的优点的认识(难点)教学过程:一、情境导入问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢?(2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?二、合作探究探究点:函数的表示方法【类型一】 用。

8、中心对称图形教学目标:1理解和掌握中心对称图形的概念和基本性质;(重点)2能利用中心对称图形的性质作图和解决实际问题(难点)教学过程:一、情境导入1观察下列三幅图形,看它们有何共同点和不同点?这三个图形都是绕着中心点旋转一定的角度后能与自身图形重合,它们都是旋转图形;2它们旋转的角度一样吗?它们旋转的角度分别是多少?其中图的旋转角度是 180度,它就是我们今天要探究的图形中心对称图形二、合作探究探究点:中心对称图形【类型一】 中心对称图形的识别下列图形是中心对称图形吗?如果是中心对称图形,在图中用点 O标出对称。

9、平移的坐标表示教学目标:1使学生掌握平面直角坐标系中的点或图形平移引起的点的坐标的变化规律;(重点、难点)2使学生看到平面直角坐标系是数与形之间的桥梁,感受到代数与几何的相互转化,初步建立空间观念教学过程:一、情境导入同学们会下棋吗?棋子的移动,什么在变,什么不变?那么在棋盘上推动棋子是否可以看成图形在平面上的平移呢?二、合作探究探究点一:平面直角坐标系中点的平移将点(1,2)向左平移 1 个单位,再向下平移 2 个单位后得到的对应点的坐标是_解析:向左平移 1 个单位,横坐标减 1,向下平移 2 个单位,纵坐标减 2。

10、正方形教学目标:1掌握正方形的概念、性质,并会运用;(重点)2理解正方形与平行四边形、矩形、菱形的联系和区别;(难点)3掌握正方形的判定条件;(重点)4合理地利用正方形的判定进行有关的论证和计算(难点)教学过程:一、情境导入做一做:用一张长方形的纸片(如图所示)折出一个正方形学生在动手过程中对正方形产生感性认识,并感知正方形与矩形的关系问题:什么样的四边形是正方形?二、合作探究探究点一:正方形的性质【类型一】 利用正方形的性质求线段长或证明如图所示,正方形 ABCD 的边长为 1, AC 是对角线, AE 平分 BAC, EF AC 于点。

11、矩形的判定教学目标:1掌握矩形的判定方法;(重点)2矩形的判定及性质的综合应用(难点)教学过程:一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形这是矩形的定义,我们可以依此判定一个四边形是矩形除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1两条对角线相等且互相平分;2四个内角都是直角这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一角是直角的平行四边形是矩形已知:如图, ABC 中, AB AC, AD 是 BC 边上的高, AE 是 BA。

12、矩形的性质教学目标:1理解并掌握矩形的性质定理及推论;(重点)2会用矩形的性质定理及推论进行推导证明;(重点)3会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明计算(难点)教学过程:一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点 D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示二、合作探究探究点一:矩形的。

13、变量与函数教学目标:1了解常量、变量的概念;(重点)2了解函数的概念;(重点)3确定简单问题的函数关系(难点)教学过程:一、情境导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定在上述例子中,每个变化过程中的两个变量:当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定你能举出一些类似的实例吗?二、合作探究探究点一:常量与变量分析并指出下列关系中的变量与常量:(1)球的表面积 Scm2与球的半径 Rcm 的关系式是 S4 R2;(2)以。

14、菱形的判定教学目标:1理解和掌握菱形的判定方法;(重点)2合理利用菱形的判定方法进行论证和计算(难点)教学过程:一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形这是菱形的定义,我们可以根据定义来判定一个四边形是菱形除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1两条对角线互相垂直平分;2四条边都相等;3每条对角线平分一组对角这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究探究点一:菱形的判定【类型一】 利用“有一组邻边相等的平行四边形是。

15、1.2.1 勾股定理教学目标:1经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2掌握勾股定理,并应用它解决简单的计算题;(重点)3了解利用拼图验证勾股定理的方法(难点)教学过程:一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形各组图形大小不一,但形状一致,结构奇巧你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理已知:如图,在 ABC 中, ACB90, AB13cm, BC5cm, CD AB 于 D。

16、频数与频率教学目标:1理解频率的概念,理解样本容量、频数、频率之间的相互关系,会计算频率;(重点,难点)2了解频数、频率的一些简单实际应用教学过程:一、情境导入某医院 2 月份出生的 20 名新生婴儿的体重如下(单位:kg):4.7.2.9.3.2.3.5.3.6.4.8.4.3.3.6.3.8.3.4.3.4.3.5.2.8.3.3.4.0、4.5.3.6.3.5.3.7.3.7.已知这一组数的平均数为 3.69, s20.2749,请说明这组数据的平均数和方差能说明医院新生婴儿体重在哪一个范围内人数最多,在哪一个范围内人数最少?你能说出体重在3.553.95kg 这一范围内的婴儿数是多少吗?用什么方法?二、。

17、1课时作业(三十八)5.2 频数直方图 一、选择题1图 K381 是八年级(1)班 45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值)由图可知,人数最多的一组是 ( )链 接 听 课 例 2归 纳 总 结图 K381A24 小时 B46 小时C68 小时 D810 小时22018江西某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出如图 K382 所示的频数直方图,由图可知,下列结论正确的是( )图 K382A最喜欢篮球的人数最多B最喜欢羽毛球的人数是最喜欢喜欢乒乓球人数的两倍C全班共有 50名学生D最喜欢田径的人数占总人数的 10%。

18、,第5章 数据的频数分布,5.2 频数直方图,第5章 数据的频数分布,5.2 频数直方图,考场对接,例题1 一个样本有20个数据:35, 31, 33, 35, 37, 39, 35, 38, 40, 39, 36, 34, 35, 37, 36, 32, 34, 35, 36, 34. 在列频数分布表时, 如果组距为2, 那么应分 成_组, 36分在第_组.,题型一 确定组数与组距,考场对接,5,3,分析这组数据中的最大值是40, 最小值是31, 差值为40-31=9. 因为组距为2, 92=4.5, 所以组 数为5, 且第1组为30.532.5, 第2组为32.534.5, 第3 组为34.536.5, 第4组为36.538.5, 第5 组为38.540.5. 故36在第3组.,锦囊妙计 确定组数的方法 。

19、第5章 数据的频数分布,5.2 频数直方图,5.2 频数直方图,目标突破,总结反思,第5章 数据的频数分布,知识目标,5.2 频数直方图,知识目标,1通过对实际情况数据的收集与整理,掌握绘制频数直方图的方法与步骤 2通过绘制频数直方图,认识直方图的构造,能从直方图中获取有用的信息,并能根据计算结果合理地做出判断与预测,目标突破,目标一 能绘制频数直方图,例1 教材补充例题 某校学生积极为地震灾区捐款奉献爱心小颖随机抽查其中30名学生的捐款情况如下(单位:元):2,5,35,8,5,10,15,20,15,5,45,10,2,8,20,30,40,10,15,15,30。

20、频数直方图教学目标:1了解频数直方图的概念;2学会画频数直方图;(难点)3学会分析频数直方图获取信息(重点)教学过程:一、情境导入现实生活中,人们不仅要收集数据,还要对收集到的数据进行加工,进而作出判断观察下面一组图片,你能从中直接获取哪些信息?二、合作探究探究点:频数直方图【类型一】 绘制频数直方图为了了解某地区八年级学生的身高情况,现随机抽取了 60 名八年级男生,测得他们的身高(单位:cm)分别为:156 162 163 172 160 141 152 173 179 174157 174 145 160 153 165 156 167 161 172178 156 166 155 140 157 167 15。

【5.2 频数直方图 同步教案湘教版八年级数学下册】相关PPT文档
2020湘教版八年级数学下册5.2 频数直方图课件(40张)
湘教版八年级数学下册《5.2频数直方图》课件
【5.2 频数直方图 同步教案湘教版八年级数学下册】相关DOC文档
1.4 角平分线的性质 同步教案(湘教版八年级数学下册)
3.1.1 平面直角坐标系 同步教案(湘教版八年级数学下册)
4.2 一次函数 同步教案(湘教版八年级数学下册)
2.1.1 多边形的内角 同步教案(湘教版八年级数学下册)
2.3.1 中心对称及其性质 同步教案(湘教版八年级数学下册)
2.1.2 多边形的外角 同步教案(湘教版八年级数学下册)
4.1.2 函数的表示法 同步教案(湘教版八年级数学下册)
2.3.2 中心对称图形 同步教案(湘教版八年级数学下册)
3.3.2 平移的坐标表示 同步教案(湘教版八年级数学下册)
2.7 正方形 同步教案(湘教版八年级数学下册)
2.5.2 矩形的判定 同步教案(湘教版八年级数学下册)
2.5.1 矩形的性质 同步教案(湘教版八年级数学下册)
4.1.1 变量与函数 同步教案(湘教版八年级数学下册)
2.6.2 菱形的判定 同步教案(湘教版八年级数学下册)
1.2.1 勾股定理 同步教案(湘教版八年级数学下册)
5.1 频数与频率 同步教案(湘教版八年级数学下册)
湘教版八年级数学下册《5.2频数直方图》课时作业(含答案)
5.2 频数直方图 同步教案(湘教版八年级数学下册)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开