欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

5.3 简单的三角恒等变换课后作业含答案

第 31 课时 简单的三角恒等变换课时目标1.能够利用半角公式进行化简2了解和差化积与积化和差公式,以及它与两角和与差公式的内在联系3了解 yasinxbcosx 的函数的变换,并会求形如 yasinxbcos x 的函数的性质识记强化1半角公式:sin2 ,sin 2 1 cos2 2 1 cos

5.3 简单的三角恒等变换课后作业含答案Tag内容描述:

1、第 31 课时 简单的三角恒等变换课时目标1.能够利用半角公式进行化简2了解和差化积与积化和差公式,以及它与两角和与差公式的内在联系3了解 yasinxbcosx 的函数的变换,并会求形如 yasinxbcos x 的函数的性质识记强化1半角公式:sin2 ,sin 2 1 cos2 2 1 cos2cos2 ,cos 2 1 cos2 2 1 cos2tan2 ,tan 2 1 cos1 cos 2 1 cos1 cos根号前符号,由 所在象限三角函数符号确定22辅助角公式:asinx bcosx sin(x ),其中 cos ,sin a2 b2aa2 b2.ba2 b2课时作业一、选择题1已知 cos (18090),则 cos ( )14 2A B.64 64C D.38 38答案:B解析:因为1809。

2、14.4 简单的三角恒等变换A组 基础题组1. 的值为( )1-tan275tan75A.2 B. C.-2 D.-3233 3 233答案 C 原式= =-2 .2tan150 32.若 cos 2= ,则 sin4+cos 4 的值为( )13A. B. C. D.11318111859答案 C cos 2= ,sin 4+cos 4=(sin 2+cos 2) 2-2sin2cos 2=1- sin22=1- (1-13 12 12cos22)=1- = .12 (1-19)593.已知 tan = ,则 的值为( )223 1-cos +sin1+cos +sinA. B.- C. D.-23 23 32 32答案 A tan = ,223 = =tan = .1-cos +sin1+cos +sin 2sin22+2sin2cos22cos22+2sin2cos2 2234.函数 f(x)=2cos xsin 的最大值为( )(x-3)A.1- B.。

3、1 简单的三角恒等变换简单的三角恒等变换 课时分层作业课时分层作业 建议用时:60 分钟 合格基础练 一选择题 1函数 fxcos2x4,xR,则 fx A是奇函数 B是偶函数 C既是奇函数,也是偶函数 D既不是奇函数,也不是偶函数 D 原。

4、53简单的三角恒等变换学习目标1.了解两角和与差的正弦、余弦公式导出积化和差、和差化积公式的基本方法理解方程思想、换元思想在整个变换过程中所起的作用.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用知识链接1代数式变换与三角变换有什么不同?答代数式变换往往着眼于式子结构形式的变换对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒。

5、53简单的三角恒等变换基础过关1已知180360,则cos的值等于()AB.CD.答案C2使函数f(x)sin(2x)cos(2x)为奇函数的的一个值是()A.B.C.D.答案D解析f(x)sin(2x)cos(2x)2sin.当时,f(x)2sin(2x)2sin2x为奇函数3函数f(x)sinxcosx(x,0)的单调递增区间是()A.B.C.D.答案D解析f(x)2sin,f(x)的单调递增区间为(kZ),因为x,0所以令k0得单调递增区间为.4sin70cos20sin10sin50的值为_答案解析sin70cos20sin10sin50(sin90sin50)(cos6。

【5.3 简单的三角恒等变换课后作业含答案】相关DOC文档
5.5.2简单的三角恒等变换 课时分层作业(含答案)
5.3 简单的三角恒等变换 学案(含答案)
《5.3 简单的三角恒等变换》课后作业(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开