第五章 三角函数 5.55.5 三角恒等变换三角恒等变换 5.5.25.5.2 简单的三角恒等变换简单的三角恒等变换 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.能用二倍角公式导出半角公式,能用两角和与 差的,第 31 课时 简单的三角恒等变换课时目标1.能够利用半角
5.3 简单的三角恒等变换 学案含答案Tag内容描述:
1、第五章 三角函数 5.55.5 三角恒等变换三角恒等变换 5.5.25.5.2 简单的三角恒等变换简单的三角恒等变换 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.能用二倍角公式导出半角公式,能用两角和与 差的。
2、第 31 课时 简单的三角恒等变换课时目标1.能够利用半角公式进行化简2了解和差化积与积化和差公式,以及它与两角和与差公式的内在联系3了解 yasinxbcosx 的函数的变换,并会求形如 yasinxbcos x 的函数的性质识记强化1半角公式:sin2 ,sin 2 1 cos2 2 1 cos2cos2 ,cos 2 1 cos2 2 1 cos2tan2 ,tan 2 1 cos1 cos 2 1 cos1 cos根号前符号,由 所在象限三角函数符号确定22辅助角公式:asinx bcosx sin(x ),其中 cos ,sin a2 b2aa2 b2.ba2 b2课时作业一、选择题1已知 cos (18090),则 cos ( )14 2A B.64 64C D.38 38答案:B解析:因为1809。
3、章末复习章末复习 一、网络构建 二、要点归纳 1两角和与差的正弦、余弦、正切公式 cos()cos cos sin sin . cos()cos cos sin sin . sin()sin cos cos sin . sin()sin cos cos sin . tan() tan tan 1tan tan . tan() tan tan 1tan tan . 2二倍角公式 sin 22si。
4、14.4 简单的三角恒等变换A组 基础题组1. 的值为( )1-tan275tan75A.2 B. C.-2 D.-3233 3 233答案 C 原式= =-2 .2tan150 32.若 cos 2= ,则 sin4+cos 4 的值为( )13A. B. C. D.11318111859答案 C cos 2= ,sin 4+cos 4=(sin 2+cos 2) 2-2sin2cos 2=1- sin22=1- (1-13 12 12cos22)=1- = .12 (1-19)593.已知 tan = ,则 的值为( )223 1-cos +sin1+cos +sinA. B.- C. D.-23 23 32 32答案 A tan = ,223 = =tan = .1-cos +sin1+cos +sin 2sin22+2sin2cos22cos22+2sin2cos2 2234.函数 f(x)=2cos xsin 的最大值为( )(x-3)A.1- B.。
5、章末复习1.两角和与差的正弦、余弦、正切公式cos()cos cos sin sin .cos()cos cos sin sin .sin()sin cos cos sin .sin()sin cos cos sin .tan().tan().2.二倍角公式sin 22sin cos .cos 2cos2sin22cos2112sin2.tan 2.3.升幂公式1cos 22cos2.1cos 22sin2.4.降幂公式sin xcos x,cos2x.sin2x.5.和差角正切公式变形tan tan tan()(1tan tan ).tan tan tan()(1tan tan ).6.辅助角公式yasin xbcos xsin(x).题型一灵活变角的思想在三角恒等变换中的应用例1。
6、第第 2 2 课时课时 简单的三角恒等变换简单的三角恒等变换 二二 课时对点练课时对点练 1. 3cos 15 4sin215 cos 15 等于 A.12 B.22 C1 D. 2 答案 D 解析 3cos 15 4sin215 cos 。
7、5.5.25.5.2 简单的三角恒等变换简单的三角恒等变换 第第 1 1 课时课时 简单的三角恒等变换简单的三角恒等变换 一一 课时对点练课时对点练 1下列各式与 tan 相等的是 A. 1cos 21cos 2 B.sin 1cos C.。
8、章末复习一、网络构建二、要点归纳1两角和与差的正弦、余弦、正切公式cos()cos cos sin sin .cos()cos cos sin sin .sin()sin cos cos sin .sin()sin cos cos sin .tan().tan().2二倍角公式sin 22sin cos .cos 2cos2sin22cos2112sin2.tan 2.3升幂公式1cos 22cos2.1cos 22sin2.4降幂公式sin xcos x,cos2x,sin2x.5和差角正切公式变形tan tan tan()(1tan tan ),tan tan tan()(1tan tan )6辅助角公式yasin xbcos xsin(x)7积化和差公式s。
9、章末复习课网络构建核心归纳1本章的公式多不易记住,解决这个问题的最好办法就是掌握每个公式的推导过程:首先用向量方法推导出C(),再用代替C()中的得到C();接着用诱导公式sin()coscos得到S()与S();将S()除以C()得到T(),将S()除以C()得到T();将S()、C()、T()中的换为,得到S2、C2、T2.2熟练掌握常用的角的变换,是提高解题速度、提高分析问题和解决问题的能力的有效途径常用的角的变换有:2、422、2()()()()、2()()()()、()()、.这些变换技巧需要同学们在平时解题的过程中多多摸索,而探索的方法就是认真观察已知条件中的角与待求式。
10、分层训练进阶冲关A 组 基础练(建议用时 20 分钟)1.(2018银川高一检测)已知 tan =2,且 ,则 cos 2=( C )A. B. C.- D.-2.若-20,所以 =2.又图象关于直线 x= 对称,所以2 +=k+ ,kZ,又- 0),xR.在曲线 y=f(x)与直线 y=1 的交点中,若相邻交点距离的最小值为 ,则 f(x)的最小正周期为 ( C )A. B. C. D.215.已知 tan(3-x)=2,则 = -3 . 16.已知函数 f(x)=Acos2(x+)+1 A0,0,00,m 0)的最小值为-2,且图象上相邻两个最高点的距离为 .(1)求 和 m 的值.(2)若 f = , ,求 f 的值.【解析】(1)易知 f(x)= sin(x+)( 为辅助角),所以 f(x)min=- =-2,又 m0,所以 m= .。
11、第第 2 课时课时 简单的三角恒等变换简单的三角恒等变换 考点一 三角函数式的化简自主练透型 1化简:sin 22cos 2 sin 4 . 2化简: 1sin cos sin 2cos 2 22cos 01的两根分别为 tan , tan。
12、第第 2 课时课时 简单的三角恒等变换简单的三角恒等变换 题型一题型一 三角函数式的化简三角函数式的化简 1(2017 湖南长沙一模)化简:2sinsin 2 cos2 2 . 答案 4sin 解析 2sinsin 2 cos2 2 2sin 2sin cos 1 21cos 2sin 1cos 1 21cos 4sin . 2化简: 2cos4x2cos2x1 2 2tan 4x sin 2 4x . 答案 1 2cos 2x 解析 原式 1 24cos 4x4cos2x1 2 sin 4x cos 4x cos2 4x 2cos2x12 4sin 4x cos 4x cos22x 2sin 22x cos22x 2cos 2x 1 2cos 2x. 。
13、微专题突破八三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助.一、灵活降幂例1 _.答案2解析2.点评常用的降幂技巧还有:因式分解降幂、用平方关系sin2cos21进行降幂:如cos4sin4(cos2sin2)22cos2sin21sin22等.二、化平方式例2 化简求值:.解因为,所以,所以cos 0,sin0,故原式sin.点评一般地,在化简求值时,遇到1cos 2,1cos 2,1sin 2,1sin 2常常化为平方式:2cos2,2sin2,(sin cos )2,(sin cos )2.三、灵活变角。
14、 3.2 简单的三角恒等变换简单的三角恒等变换 一、选择题 1已知 cos 1 5, 3 2 ,2 ,则 sin 2等于( ) A. 10 5 B 10 5 C.2 6 5 D.2 5 5 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A 解析 3 2 ,2 , 2 3 4 , , sin 2 1cos 2 10 5 . 2设 是第二象限角,tan 4 3。
15、5 5. .5.25.2 简单的三角恒等变换简单的三角恒等变换 基础达标 一选择题 1.函数 y3sin 4x 3cos 4x 的最大值是 A. 3 B.2 3 C.3 D.6 解析 y3sin 4x 3cos 4x 2 332sin 4x。
16、 3.2 简单的三角恒等变换简单的三角恒等变换 基础过关 1下列各式与 tan 相等的是( ) A 1cos 2 1cos 2 B sin 1cos C sin 1cos 2 D1cos 2 sin 2 解析 1cos 2 sin 2 2sin2 2sin cos sin cos tan 答案 D 2设 56,cos 2a,则 sin 4等于( ) A 1a 2 B 1a 2。
17、5 5. .5.25.2 简单的三角恒等变换简单的三角恒等变换 一选择题 1.函数 y3sin 4x 3cos 4x 的最大值是 A. 3 B.2 3 C.3 D.6 答案 B 解析 y3sin 4x 3cos 4x 2 332sin 4x。
18、 3.2 简单的三角恒等变换简单的三角恒等变换 学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒 等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用 知识点一 半角公式 sin 2 1cos 2 , cos 2 1cos 2 , tan 2 1cos 1c。
19、53简单的三角恒等变换基础过关1已知180360,则cos的值等于()AB.CD.答案C2使函数f(x)sin(2x)cos(2x)为奇函数的的一个值是()A.B.C.D.答案D解析f(x)sin(2x)cos(2x)2sin.当时,f(x)2sin(2x)2sin2x为奇函数3函数f(x)sinxcosx(x,0)的单调递增区间是()A.B.C.D.答案D解析f(x)2sin,f(x)的单调递增区间为(kZ),因为x,0所以令k0得单调递增区间为.4sin70cos20sin10sin50的值为_答案解析sin70cos20sin10sin50(sin90sin50)(cos6。
20、53简单的三角恒等变换学习目标1.了解两角和与差的正弦、余弦公式导出积化和差、和差化积公式的基本方法理解方程思想、换元思想在整个变换过程中所起的作用.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用知识链接1代数式变换与三角变换有什么不同?答代数式变换往往着眼于式子结构形式的变换对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒。