专题复习一 待定系数法求二次函数表达式二次函数表达式的三种形式:一般式 y=ax2+bx+c(a0); 顶点式 y=a(x-m)2+k(a0);交点式(分解式)y=a(x-x 1)(x-x2),求函数表达式时要根据已知条件合理选择表达式形式.1.一抛物线和抛物线 y=-2x2 的形状、开口方向完全相
5.3用待定系数法确定二次函数表达式Tag内容描述:
1、专题复习一 待定系数法求二次函数表达式二次函数表达式的三种形式:一般式 y=ax2+bx+c(a0); 顶点式 y=a(x-m)2+k(a0);交点式(分解式)y=a(x-x 1)(x-x2),求函数表达式时要根据已知条件合理选择表达式形式.1.一抛物线和抛物线 y=-2x2 的形状、开口方向完全相同,顶点坐标是(-1,3) ,则该抛物线的函数表达式为(B).A.y=-2(x-1)2+3 B.y=-2(x+1)2+3 C.y=-(2x+1)2+3 D.y=-(2x-1)2+32.如图所示,在平面直角坐标系中,二次函数 y=ax2+bx+c 的图象顶点为点 A(-2,-2),且过点 B(0,2),则 y 关于 x 的函数表达式为 (D).A.y=x2+2 B.y=(x-2)2+2 C.y=(x-。
2、4.4 用待定系数法确定一次函数表达式 一、选择题12018枣庄如图 K321,直线 l 是一次函数 ykxb 的图象,如果点 A(3,m)在直线l 上,则 m 的值为( )图 K321A5 B. C. D732 522已知一次函数 yaxb(a,b 为常数,且 a0)的图象经过点(1,3)和(0,2),则 ab的值为 ( )链 接 听 课 例 1归 纳 总 结A1 B3 C3 D73已知 y2 与 x 成正比例,且当 x1 时,y6,则 y 与 x 之间的函数表达式是( )Ay4x By6xCy4x2 Dy4x24一次函数 ymx|m1|的图象过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )A1 B3 C1 D1 或 35如图 K322,把直线 y2x 向上平移后得到直线 。
3、用待定系数法确定一次函数表达式教学目标:1从题目中获取待定系数法所需要的两个点的条件;(难点)2用待定系数法求一次函数的解析式(重点)教学过程:一、情境导入已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数现已测得不挂重物时弹簧的长度是 6 厘米,挂 4 千克质量的重物时,弹簧的长度是 7.2 厘米求这个一次函数的关系式一次函数解析式怎样确定?需要几个条件?二、合作探究探究点一:用待定系数法求一次函数解析式【类型一】 已知两点确定一次函数解析式已知一次函数经过点 A(3,5)和点 B(4,9)(1)求此一次函数。
4、5.3用待定系数法确定二次函数表达式知识点 1用一般式求二次函数的表达式1.已知点A(-1,0)在抛物线y=ax2+2上,则此抛物线的函数表达式为()A.y=x2+2 B.y=x2-2C.y=-x2+2 D.y=-2x2+22.如图5-3-1所示的抛物线是二次函数y=ax2+5x+4-a2的图像,那么a的值是()图5-3-1A.2 B.-2 C.-52 D.23.已知二次函数的图像如图5-3-2所示,则这个二次函数的表达式为()图5-3-2A.y=x2-2x+3 B.y=x2-2x-3C.y=x2+2x-3 D.y=x2+2x+34.2019苏州工业园区一模 若二次函数y=ax2+bx-3的图像经过点(-1,0),(3,0),则其函数表达式为.5。
5、,苏科数学,5.3 用待定系数法确定二次函数表达式,2还记得我们是怎样求一次函数和反比例函数的表达式吗?,1二次函数关系式有哪几种表达方式?,用待定系数法求解,一般式: yax2 bxc (a0),顶点式:y a(x h)2 k (a0),知识回顾,活动一:,例1 已知二次函数yax2 的图像经过点(2,8), 求a的值,由一般式yax2 bxc 确定二次函数的表达式,例2 已知二次函数yax2 c的图像经过点(2,8)和(1,5),求a、c的值,对比三个例题的区别和联系,总结用一般式确定二次函数表达式的方法,例3 已知二次函数yax2 bx c经过点 (3,6)、(2,1)和(0,3),求这个二次。