欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

5.4.3正切函数的性质与图象 学案含答案

第五章 三角函数 5.45.4 三角函数的图象与性质三角函数的图象与性质 5.4.35.4.3 正切函数的性质与图象正切函数的性质与图象 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.能画出正切函数的图象重点 ,1.3.2余弦函数、正切函数的图象与性质(二) 一、选择题

5.4.3正切函数的性质与图象 学案含答案Tag内容描述:

1、第五章 三角函数 5.45.4 三角函数的图象与性质三角函数的图象与性质 5.4.35.4.3 正切函数的性质与图象正切函数的性质与图象 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.能画出正切函数的图象重点 。

2、1.3.2余弦函数、正切函数的图象与性质(二)一、选择题1.函数f(x)2tan(x)是()A.奇函数B.偶函数C.奇函数,也是偶函数D.非奇非偶函数答案A解析因为f(x)2tan x2tan(x)f(x),且f(x)的定义域关于原点对称,所以函数f(x)2tan(x)是奇函数.2.下列各点中,不是函数ytan图象的对称中心的是()A. B.C. D.答案C解析令2x,kZ,得x(kZ).令k0,得x;令k1,得x;令k2,得x.故选C.3.满足tan A1的三角形的内角A的取值范围是()A. B.C. D.答案D解析因为A为三角形的内角,所以01,结合正切曲线得A.4.已知函数f(x)tan x (0)图象的相邻两支截直线y所得的线段长为,则。

3、1.3.2余弦函数、正切函数的图象与性质(一)一、选择题1.若ysin x是减函数,ycos x是增函数,那么角x在()A.第一象限 B.第二象限C.第三象限 D.第四象限答案C2.函数y2cos x的单调递增区间是()A.2k,2k2 (kZ)B.k,k2 (kZ)C. (kZ)D.2k,2k (kZ)答案D解析令ucos x,则y2u,y2u在u(,)上是增函数,y2cos x的增区间,即ucos x的增区间,即vcos x的减区间2k,2k (kZ).3.下列函数中,周期为,且在上为减函数的是()A.ysin B.ycosC.ysin D.ycos答案A解析因为函数周期为,所以排除C,D.又因为ycossin 2x在上为增函数,故B不符合.故选A.4.要得到ycos的图。

4、第2课时正切函数的图象与性质一、选择题1函数ytan的定义域是()ARB.C.D.答案B2函数f(x)tan的单调递增区间为()A.,kZB(k,(k1),kZC.,kZD.,kZ答案C3函数f(x)|tan 2x|是()A周期为的奇函数 B周期为的偶函数C周期为的奇函数 D周期为的偶函数考点正切函数周期性与对称性题点正切函数周期性、奇偶性答案D解析f(x)|tan(2x)|tan 2x|f(x),故f(x)为偶函数,T.4与函数ytan的图象不相交的一条直线是()Ax ByCx Dy考点正切函数的图象题点正切函数的图象答案C解析令2xk(kZ),得x(kZ)令k0,得x.5已知f(x)tan,则使f(x)成立的x的集合是()A.,kZB.,kZC.,。

5、1 正切函数的性质与图象正切函数的性质与图象 课时分层作业课时分层作业 建议用时:60 分钟 合格基础练 一选择题 1函数 yxtan 2x 是 A奇函数 B偶函数 C非奇非偶函数 D既是奇函数,又是偶函数 A 易知 2xk2,即 xk24。

6、14.3 正切函数的性质与图象正切函数的性质与图象 一、选择题 1函数 ytan x 5 ,xR 且 x 3 10k,kZ 的一个对称中心是( ) A(0,0) B. 5,0 C. 4 5,0 D(,0) 考点 正切函数的周期性与对称性 题点 正切函数的对称性 答案 C 2函数 f(x)tan x 4 的单调递增区间为( ) A. k 2,k 2 ,kZ B(k,(k1),kZ C。

7、1.3.2余弦函数、正切函数的图象与性质(一)基础过关1若ysinx是减函数,ycosx是增函数,那么角x在()A第一象限 B第二象限C第三象限 D第四象限答案C2函数y2cosx的单调递增区间是()A2k,2k2 (kZ)Bk,k2 (kZ)C. (kZ)D2k,2k (kZ)答案D解析令ucosx,则y2u,y2u在u(,)上是增函数,y2cosx的增区间,即ucosx的增区间,即ucosx的减区间2k,2k (kZ)3下列函数中,周期为,且在上为减函数的是()Aysin BycosCysin Dycos答案A解析因为函数周期为,所以排除C、D.又因为ycossin2x在上为增函数,故B不符合故选A.4.设函数f(x)cos,则下列结论错误的是()Af(x)。

8、13.2余弦函数、正切函数的图象与性质(二)基础过关1函数ytan,xR的一个对称中心是()A(0,0) B.C. D(,0)答案C2函数ytan的定义域是()A.B.C.D.答案D解析由ytantan,xk,kZ,从而得xk,kZ.3在函数ycos|2x|,y|cosx|,ycos(2x),ytan(2x)中,最小正周期为的所有函数为()A BC D答案C解析ycos|2x|cos2x,T.由图象知,函数的周期T.T.T.综上可知,最小正周期为的所有函数为.4下列各式中正确的是()Atan735tan800 Btan1tan2Ctantan Dtan&l。

9、1.4.3 正切函数的性质与图象正切函数的性质与图象 基础过关 1函数 y2tan(2x 3)的定义域为( ) Ax|x 12 Bx|x 12 Cx|x 12k,kZ Dx|x 12 1 2k,kZ 解析 由 2x 3 2k,kZ,得 x 12 1 2k,kZ,故函数的定义域为x|x 12 1 2k, kZ 答案 D 2函数 ytan x 1 tan x是( ) A奇函数 B偶函数 C既是奇函数又。

10、第2课时正切函数的图象与性质学习目标1.会求正切函数ytan(x)的周期.2.掌握正切函数ytan x的奇偶性,并会判断简单三角函数的奇偶性.3.掌握正切函数的单调性,并掌握其图象的画法知识点一正切函数的图象1正切函数的图象叫正切曲线,图象如下:2正切函数的图象特征正切曲线是被相互平行的直线xk,kZ所隔开的无穷多支曲线组成的知识点二正切函数的性质函数ytan x的图象与性质见下表:解析式ytan x图象定义域值域R周期奇偶性奇单调性在开区间(kZ)上都是单调增函数1函数ytan x在其定义域上是增函数()提示ytan x在开区间(kZ)上是增函数,但在其定。

11、第五章第五章 三角函数三角函数 5.4.3 正切函数的图像与性质正切函数的图像与性质 1理解并掌握正切函数的周期性定义域值域奇偶性和单调性。 2能够应用正切函数的图象和性质解决相关问题。 3会利用正切线及正切函数的性质作正切函数的图象。 4。

12、新教材新教材5.4.3 正切函数的图像与性质人教正切函数的图像与性质人教 A 版版 1掌握利用单位圆中正切函数定义得到图象的方法; 2能够利用正切函数图象准确归纳其性质并能简单地应用. 1.数学抽象:借助单位圆理解正切函数的图像; 2.逻辑。

13、1.3.2余弦函数、正切函数的图象与性质(二)学习目标1.了解正切函数图象的画法,理解掌握正切函数的性质.2.能利用正切函数的图象及性质解决有关问题.知识点一正切函数的图象(1)正切函数的图象称作“正切曲线”,如图所示.(2)正切函数的图象特征正切曲线是由通过点(kZ)且与y轴相互平行的直线隔开的无穷多支曲线所组成的.知识点二正切函数的性质函数ytan x的图象与性质见下表:解析式ytan x图象定义域域R周期奇偶性奇函数单调性在开区间(kZ)内都是增函数1.函数ytan x在其定义域上是增函数.()提示ytan x在开区间(kZ)上是增函数,但在其定义域上。

14、1.3.2余弦函数、正切函数的图象与性质(一)学习目标1.会用“五点法”作出余弦函数的简图.2.理解余弦函数的性质,会求余弦函数的周期、单调区间及最值.3.理解正弦曲线与余弦曲线的联系.知识点一余弦函数的图象在精确度要求不高时,要画出ycos x,x0,2的图象,可以通过描出(0,1),(,1),(2,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数ycos x,x0,2的图象.知识点二余弦函数的性质正弦函数、余弦函数的图象、性质对比函数ysin xycos x图象定义域RR值域1,11,1奇偶性奇函数偶函数周期性最小正周期:2最小正周期:2单调性在(。

15、3.3.2正切函数的图象与性质学习目标1.了解正切函数图象的画法,理解掌握正切函数的性质.2.能利用正切函数的图象及性质解决有关问题知识链接1正切函数的定义域是什么?用区间如何表示?答,x (kZ)2如何作正切函数的图象?答类似于正弦、余弦函数的“五点法”作图,正切曲线的简图可用“三点两线法”,这里的三点分别为(k,0),其中kZ,两线分别为直线xk(kZ),xk(kZ)3根据相关诱导公式,你能判断正切函数具有奇偶性吗?答从正切函数的图象来看,正切曲线关于原点对称;从诱导公式来看,tan(x)tanx故正切函数是奇函数预习导引函数ytanx的性质。

16、14.3 正切函数的性质与图象正切函数的性质与图象 学习目标 1.会求正切函数 ytan(x)的周期.2.掌握正切函数 ytan x 的奇偶性, 并会判 断简单三角函数的奇偶性.3.掌握正切函数的单调性,并掌握其图象的画法 知识点 正切函数的性质 函数 ytan x xR且xk 2,kZ 的图象与性质见下表: 解析式 ytan x 图象 定义域 x xR且xk 2,kZ 值域 R 。

17、5 5. .4.34.3 正切函数的性质与图象正切函数的性质与图象 基础达标 一选择题 1.函数 ytan x1tan x是 A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数 解析 函数的定义域是xx12k,k。

18、5.4.35.4.3 正切函数的性质与图象正切函数的性质与图象 课时对点练课时对点练 1函数 fx2tan2x6的定义域是 A.xR x6 B.xR x12 C.xR xk6,kZ D.xR xk26,kZ 答案 D 解析 由 2x62k,。

19、5 5. .4.34.3 正切函数的性质与图象正切函数的性质与图象 一选择题 1.函数 ytan x1tan x是 A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数 答案 A 解析 函数的定义域是xx12k,k。

20、1 5.4.3 正切函数的性质与图象正切函数的性质与图象 学 习 目 标 核 心 素 养 1.能画出正切函数的图象重点 2.掌握正切函数的性质重点难点 3.掌握正切函数的定义域及正切曲线的渐近线 易错点 1.借助正切函数的图象研究问题,培养。

【5.4.3正切函数的性质与图象 学案含答案】相关PPT文档
【5.4.3正切函数的性质与图象 学案含答案】相关DOC文档
1.3.2 余弦函数、正切函数的图象与性质(二)课时对点练(含答案)
1.3.2 余弦函数、正切函数的图象与性质(一)课时对点练(含答案)
5.4.4正切函数的性质与图象 课时分层作业(含答案)
1.4.3 正切函数的性质与图象 课时对点习(含答案)
1.3.2 余弦函数、正切函数的图象与性质(一)同步练习(含答案)
1.3.2 余弦函数、正切函数的图象与性质(二)同步练习(含答案)
1.4.3 正切函数的性质与图象 课时练习(含答案)
5.4.3正切函数的图像与性质 导学案(1)含答案
5.4.3正切函数的图像与性质 导学案(2)含答案
1.3.2 余弦函数、正切函数的图象与性质(二)学案(含答案)
1.3.2 余弦函数、正切函数的图象与性质(一)学案(含答案)
3.3.2 正切函数的图象与性质 学案(含答案)
1.4.3 正切函数的性质与图象 学案(含答案)
5.4.3正切函数的性质与图象 基础达标+能力提升(含答案)
5.4.3正切函数的性质与图象 课时对点练(含答案)
5.4.3正切函数的性质与图象 分层训练(含答案)
5.4.3正切函数的性质与图象 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开