第 3 课时 二次函数 ya(xh) 2k 的图象与性质知识点 1 二次函数 ya( xh) 2k 的图象与 yax 2, ya(xh) 2 的图象的关系1二次函数 y3 2 的图象是由抛物线 y3x 2 先向_(填“左”或(x 4)2 “右”) 平移_个单位,再向 _(填“上”或 “下”)平移_个
5.6函数yAsin 课时练习2含答案解析Tag内容描述:
1、第 3 课时 二次函数 ya(xh) 2k 的图象与性质知识点 1 二次函数 ya( xh) 2k 的图象与 yax 2, ya(xh) 2 的图象的关系1二次函数 y3 2 的图象是由抛物线 y3x 2 先向_(填“左”或(x 4)2 “右”) 平移_个单位,再向 _(填“上”或 “下”)平移_个单位得到的22017常德将抛物线 y2x 2 向右平移 3 个单位,再向下平移 5 个单位,得到的抛物线的表达式为( )Ay2( x3) 25 By2( x3) 25Cy 2(x3) 25 Dy2( x3) 253抛物线 y( x2) 23 可以由抛物线 yx 2 平移得到,则下列平移过程正确的是( )A先向左平移 2 个单位,再向上平移 3 个单位B先向左平移 2 个单位。
2、第 4 课时 二次函数 yax 2bxc 的图象与性质知识点 1 二次函数 yax 2bxc 与 ya( xh) 2k 的关系12018山西用配方法将二次函数 yx 28x9 化为 ya(xh) 2k 的形式为( )Ay(x4) 27 By(x4) 225Cy (x4) 27 Dy(x4) 2252试通过配方法求出抛物线 yx 24x 8 的顶点坐标和对称轴,并指出当 x 在什么范围内时,y 随 x 的增大而减小知识点 2 抛物线 yax 2bxc 的平移3在同一平面直角坐标系内,将函数 yx 24x1 的图象先向右平移 3 个单位,再向下平移 1 个单位,得到的图象的顶点坐标是( )A(2,5) B(1,4)C(1,6) D(2,2)42018广西将抛物线 y x26x21 向左平移 2。
3、26.2.2 第 1 课时 二次函数 yax 2k 的图象与性质知识点 1 二次函数 yax 2k 的图象与 yax 2 的图象的关系1如图 2628,将抛物线 y x2 向_平移_个单位得到抛物线13y x22;将抛物线 y x2 向_平移_个单位得到抛物线 y x22.13 13 13图 26282将二次函数 yx 2 的图象向下平移 1 个单位,则平移后的二次函数的关系式为( )Ayx 21 By x 21Cy (x1) 2 Dy(x 1) 23教材练习第 2 题变式不画出图象,回答下列问题:(1)函数 y4x 22 的图象可以看成是由函数 y4x 2 的图象通过怎样的平移得到的?(2)说出函数 y4x 22 的图象的开口方向、对称轴和顶点坐标;(3)如。
4、第 2 课时 二次函数 ya(xh )2 的图象与性质知识点 1 二次函数 ya( xh) 2 的图象与 yax 2 的图象的关系1将抛物线 yx 2 向_平移_个单位得到抛物线 y( x5) 2;将抛物线yx 2 向_平移_ 个单位得到抛物线 y( x5) 2.2下列方法可以得到抛物线 y (x2) 2 的是( )25A把抛物线 y x2 向右平移 2 个单位25B把抛物线 y x2 向左平移 2 个单位25C把抛物线 y x2 向上平移 2 个单位25D把抛物线 y x2 向下平移 2 个单位253顶点是(2,0),开口方向、形状与抛物线 y x2 相同的抛物线是( )12Ay (x2) 2 By (x 2)212 12Cy (x2) 2 Dy (x2) 212 12知识点 2 二次函数 y。
5、第第 2 2 课时课时 函数函数 y yA Asinsin xx 的图象的图象 二二 课时对点练课时对点练 1将函数 fxsin x 的图象上各点横坐标变为原来的12,纵坐标不变,再将所得图象向左平移3个单位长度,得到函数 gx的图象,则函。
6、5.65.6 函数函数 yAsinyAsinxx的图像的图像 一一选择题选择题 1 2019 高一课时练要得到函数3sin24yx的图像,只需将函数3sin2yx的图像 A向左平移4个单位 B向右平移4个单位 C向左平移8个单位 D向右平移。
7、5.6 函数函数 yAsin 用时 45 分钟 选题明细表 知识点方法 题号 平移变换 1,2,3,6,7,8,9 综合运用 4,5,10,11,12,13 基础巩固基础巩固 1 已知函数 2cos2f xx, 要得到 2cos 24g x。