8.5 直线直线、平面垂直的判定与性质平面垂直的判定与性质 最新考纲 考情考向分析 1.以立体几何的定义、 公理和定理为出发点, 认识和理解空间中线面垂直的有关性质与 判定定理. 2.能运用公理、定理和已获得的结论证明一 些空间图形的垂直关系的简单命题. 直线、平面垂直的判定及其性质是高考中的 重
6.1 垂直关系的判定 学案含答案Tag内容描述:
1、 8.5 直线直线、平面垂直的判定与性质平面垂直的判定与性质 最新考纲 考情考向分析 1.以立体几何的定义、 公理和定理为出发点, 认识和理解空间中线面垂直的有关性质与 判定定理. 2.能运用公理、定理和已获得的结论证明一 些空间图形的垂直关系的简单命题. 直线、平面垂直的判定及其性质是高考中的 重点考查内容,涉及线线垂直、线面垂直、 面面垂直的判定及其应用等内容题型主要 以解答题的形式出现,解题要求有较强的推 理论证能力,广泛应用转化与化归的思想. 1直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直。
2、2.1.2 两条直线平行和垂直的判定两条直线平行和垂直的判定 课标要求 素养要求 1.能根据斜率判定两条直线平行或垂直. 2.能应用两条直线平行或垂直解决有关 问题. 通过学习两条直线平行与垂直的判定, 提升数学抽象数学运算及逻辑推理素 养。
3、第2课时两平面垂直的判定学习目标1.了解二面角及其平面角的概念,能确定二面角的平面角.2.初步掌握面面垂直的定义及两个平面垂直的判定定理.知识点一二面角概念一般地,一条直线和由这条直线出发的两个半平面所组成的图形图示平面角定义一般地,以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的射线,这两条射线所成的角叫做二面角的平面角图示符号OA,OB,l,Ol,OAl,OBlAOB是二面角的平面角范围0,规定二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面。
4、5平行关系5.1平行关系的判定学习目标1.理解直线与平面平行、平面与平面平行的判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题.知识点一直线与平面平行的判定定理表示定理图形文字符号直线与平面平行的判定定理若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行a思考如图,一块矩形木板ABCD的一边AB在平面内,把这块木板绕AB转动,在转动过程中,AB的对。
5、6.2垂直关系的性质学习目标1.掌握直线与平面垂直,平面与平面垂直的性质定理.2.能运用性质定理解决一些简单问题.3.了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系.知识点一直线与平面垂直的性质定理文字语言如果两条直线同垂直于一个平面,那么这两条直线平行符号语言ab图形语言知识点二平面与平面垂直的性质文字语言如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面符号语言,l,a,ala图形语言1.如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面.()2.若平面平面,任取。
6、6垂直关系6.1垂直关系的判定基础过关1.如图,在正方形ABCD中,E,F分别是BC和CD的中点,G是EF的中点,现在沿着AE和AF及EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为H.那么,在四面体AEFH中必有()A.HGAEF所在平面B.AGEFH所在平面C.HFAEF所在平面D.AHEFH所在平面解析ADDF,ABBE,AHHF,AHHE.又EHFHH,AH面EFH.答案D2.如图,AB是圆的直径,PA垂直于圆所在的平面,C是圆上一点(不同于A、B)且PAAC,则二面角PBCA的大小为()A.60 B.30C.45 D.15解析由条件得PABC,ACBC,又PAACC,BC平面PAC,BCPC,PCA为二面角PBCA的平面角.在Rt。
7、6垂直关系6.1垂直关系的判定一、选择题1.已知l,则过l与垂直的平面()A.有1个 B.有2个C.有无数个 D.不存在考点平面与平面垂直的判定题点判定两平面垂直答案C解析过直线l的平面都与垂直.2.过两点与一个已知平面垂直的平面()A.有且只有一个 B.有无数个C.有且只有一个或无数个 D.可能不存在考点平面与平面垂直的判定题点判定两平面垂直答案C解析若过两点的直线与已知平面垂直时,此时过这两点有无数个平面与已知平面垂直,若过两点的直线与已知平面不垂直时,则有且只有一个过这两点的平面与已知平面垂直.3.下列说法中,正确的有()如果一条直。
8、6垂直关系6.1垂直关系的判定学习目标1.掌握直线与平面垂直的定义、判定定理.2.掌握平面与平面垂直的概念、判定定理.3.会应用两定义及两定理证明有关的垂直问题.知识点一直线与平面垂直的定义定义如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直记法l有关概念直线l叫作平面的垂线,平面叫作直线l的垂面,它们唯一的公共点P叫作垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的横边垂直知识点二直线和平面垂直的判定定理文字语言如果一条直线和一个平面内的两条相交直线都垂直,那么。