欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

6.2.3向量的数乘运算 课时对点练含答案

2指数扩充及其运算性质 一、选择题 1化简式子()2的结果是() A. B C. D 考点有理数指数幂的运算性质 题点有理数指数幂的乘除运算 答案C 解析()23. 2下列根式、分数指数幂的互化中,正确的是() A(x) Bx C. (x,y0) D.y 考点根式与分数指数幂的互化 题点根式与分数指

6.2.3向量的数乘运算 课时对点练含答案Tag内容描述:

1、2指数扩充及其运算性质一、选择题1化简式子()2的结果是()A. B C. D考点有理数指数幂的运算性质题点有理数指数幂的乘除运算答案C解析()23.2下列根式、分数指数幂的互化中,正确的是()A(x)BxC. (x,y0)D.y考点根式与分数指数幂的互化题点根式与分数指数幂的互化答案C解析x,x,故选C.3.等于()Aa Ba Ca Da考点根式与分数指数幂的互化题点根式与分数指数幂的互化答案B解析aa.4(32x)中x的取值范围是()A(,) B.C. D.考点根式与分数指数幂的互化题点根式与分数指数幂的互化答案C解析(32x),要使该式有意义,需32x0,即x.52,3,6这三个数的大小关。

2、2指数扩充及其运算性质一、选择题1.等于()A.9 B.2 C. D.答案C2.下列各式中成立的是()A.7 B.C. D.答案D3.化简式子的结果是()A. B. C. D.考点根式与分数指数幂的互化题点根式化为分数指数幂答案C解析()23.4.化简的结果为()A. B. C. D.考点根式与分数指数幂的互化题点根式化为分数指数幂答案A解析显然a0.aaa.5.等于()考点根式与分数指数幂的互化题点根式化为分数指数幂答案B解析.6.设a0,将表示成分数指数幂,其结果是()答案C解析原式7.设m,则等于()A.m22 B.2m2 C.m22 D.m2考点有理数指数幂的运算性质题点附加条件的幂的求值答案C。

3、2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律一、选择题1.已知|a|3,|b|4,且a与b的夹角150,则ab等于()A.6 B.6 C.6 D.6答案C2.已知|a|9,|b|6,ab54,则a与b的夹角为()A.45 B.135 C.120 D.150答案B解析cos ,又0180,135.3.已知|a|2,|b|3,|ab|,则|ab|等于()A. B. C. D.答案A解析因为|ab|219,所以a22abb219,所以2ab19496.于是|ab|.4.若|a|2,|b|4,向量a与向量b的夹角为120,则向量a在向量b方向上的正射影的数量等于()A.3 。

4、4平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示一、选择题1已知M(2,3),N(3,1),则的坐标是()A(2,1) B(1,2) C(2,1) D(1,2)考点平面向量的正交分解及坐标表示题点平面向量的正交分解及坐标表示答案B解析(2,3)(3,1)(1,2)2已知向量a(1,2),b(1,0),那么向量3ba的坐标是()A(4,2) B(4,2) C(4,2) D(4,2)答案D解析3ba3(1,0)(1,2)(3,0)(1,2)(4,2),故选D.3已知ab(1,2),ab(4,10),则a等于()A(2,2) B(2,2) C(2,2) D(2,2)答案D4已知两点A(4,1),B(7,3),则与向量同向的单位向量是()A. B.C. D.考点平面向量的坐标运算。

5、2.3.2平面向量的坐标运算第1课时平面向量的坐标表示及坐标运算一、选择题1已知M(2,3),N(3,1),则的坐标是()A(2,1) B(1,2) C(2,1) D(1,2)考点平面向量的正交分解及坐标表示题点平面向量的正交分解及坐标表示答案B解析(2,3)(3,1)(1,2)2已知ab(1,2),ab(4,10),则a等于()A(2,2) B(2,2)C(2,2) D(2,2)考点平面向量坐标运算的应用题点利用平面向量的坐标运算求向量的坐标答案D3若向量a(1,1),b(1,1),c(4,2),则c等于()A3ab B3abCa3b Da3b考点平面向量的坐标运算的应用题点用坐标形式下的基底表示向量答案A解析设cxayb,则解得c3ab.4已知。

6、第2课时平面向量数量积的坐标运算一、选择题1已知a(3,1),b(1,2),则a与b的夹角为()A. B. C. D.考点平面向量夹角的坐标表示与应用题点求坐标形式下的向量的夹角答案B解析|a|,|b|,ab5.cosa,b.又a,b的夹角范围为0,a与b的夹角为.2设向量a(2,0),b(1,1),则下列结论中正确的是()A|a|b| Bab0Cab D(ab)b考点平面向量平行与垂直的坐标表示与应用题点向量垂直的坐标表示的综合应用答案D解析ab(1,1),所以(ab)b110,所以(ab)b.3已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A. B3 C D3考点平面向量投影的坐标表示与应用题点平面向。

7、2.1.5向量共线的条件与轴上向量坐标运算一、选择题1.在ABC中,已知D是AB边上的一点,若,则等于()A. B. C. D.答案B解析A,B,D三点共线,1,.2.已知a,b是不共线的向量,a2b,a(1)b,且A,B,C三点共线,则实数的值为()A.1 B.2C.2或1 D.1或2考点平行向量基本定理及其应用题点利用平行向量基本定理求参数答案D解析因为A,B,C三点共线,所以存在实数k使k.因为a2b,a(1)b,所以a2bka(1)b.因为a与b不共线,所以解得2或1.3.设a,b不共线,2apb,ab,a2b,若A,B,D三点共线,则实数p的值是()A.2 B.1 C.1 D.2答案B解析ab,a2b,2ab.又A,B,D三。

8、2.2.2向量的正交分解与向量的直角坐标运算一、选择题1.已知向量a(1,2),b(1,0),那么向量3ba的坐标是()A.(4,2) B.(4,2) C.(4,2) D.(4,2)答案D解析3ba3(1,0)(1,2)(3,0)(1,2)(31,02)(4,2),故选D.2.已知ab(1,2),ab(4,10),则a等于()A.(2,2) B.(2,2) C.(2,2) D.(2,2)答案D3.已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则1,2的值分别为()A.2,1 B.1,2 C.2,1 D.1,2答案D解析由解得4.在ABCD中,已知(3,7),(2,3),对角线AC,BD相交于点O,则的坐标是()A. B.C. D.答案B解析()(2,3)(3,7),故选B.5.已知向量a(5,2),。

9、2.3.2向量数量积的运算律一、基础达标1设为两个非零向量a,b的夹角,已知对任意实数t,|bta|的最小值为1.()A若确定,则|a|唯一确定B若确定,则|b|唯一确定C若|a|确定,则唯一确定D若|b|确定,则唯一确定答案B解析|bta|2b22abtt2a2|a|2t22|a|b|cost|b|2.因为|bta|min1,所以|b|2(1cos2)1.所以|b|2sin21,所以|b|sin1,即|b|.即确定,|b|唯一确定2已知向量a,b,其中|a|,|b|2,且(ab)a,则向量a和b的夹角是()A. B. C. D答案A解析由题意知(ab)aa2ab2ab0,ab2,设a与b的夹角为,则cos,.3已知向量a,b的夹角为120,|a|1,|b。

10、 2 空间向量的运算空间向量的运算(一一) 一、选择题 1.化简PM PN MN 所得的结果是( ) A.PM B.NP C.0 D.MN 考点 空间向量的加减运算 题点 空间向量的加减运算 答案 C 解析 PM PN MN NM MN NM NM 0,故选 C. 2.空间任意四个点 A,B,C,D,则DA CD CB 等于( ) A.DB B.AC C.AB D.BA 考点 空间向量的加减运算 题点 空间向量的加减运算 答案 D 3.已知空间四边形 ABCD,连接 AC,BD,设 G 是 CD 的中点,则AB 1 2(BD BC )等于( ) A.AG B.CG C.BC D.1 2BC 考点 空间向量的加减运算 题点 空间向量的加减运算 答案 A 解析 如图,因为BD BC 2BG , 。

11、 2 空间向量的运算空间向量的运算(二二) 一、选择题 1.已知非零向量 a,b 不平行,并且其模相等,则 ab 与 ab 之间的关系是( ) A.垂直 B.共线 C.不垂直 D.以上都可能 考点 空间向量数量积的概念及性质 题点 数量积的性质 答案 A 解析 由题意知|a|b|, (ab) (ab)|a|2|b|20, (ab)(ab). 2.已知向量 a,b 满足条件:|a|2,|b| 2,且 a 与 2ba 互相垂直,则a,b等于( ) A.30 B.45 C.60 D.90 考点 空间向量数量积的应用 题点 利用数量积求角 答案 B 解析 根据 a (2ba)0, 即 2a b|a|24, 解得 a b2, 又 cosa,b a b |a|b| 2 2 2 2 2 , 又a,b。

12、6 6. .2.22.2 向量的减法运算向量的减法运算 1.如图所示,在ABCD 中,ABa,ADb,则用 a,b 表示向量AC和BD分别是 Aab 和 ab Bab 和 ba Cab 和 ba Dba 和 ba 答案 B 解析 由向量的加。

13、6.26.2 平面向量的运算平面向量的运算 6 6. .2.12.1 向量的加法运算向量的加法运算 1.如图,在正六边形 ABCDEF 中,BACDEF等于 A0 B.BE C.AD D.CF 答案 D 解析 BACDEFDECDEFCEE。

14、7 7. .2.22.2 复数的乘复数的乘除运算除运算 1在复平面内,复数 zi2i对应的点位于 A第一象限 B第二象限 C第三象限 D第四象限 答案 C 解析 zi2i2ii212i, 故复平面内复数 zi2i对应的点位于第三象限 2设 。

15、22.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 一、选择题 1下列说法中正确的是( ) Aa 与 a 的方向不是相同就是相反 B若 a,b 共线,则 ba C若|b|2|a|,则 b 2a D若 b 2a,则|b|2|a| 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D 解析 显然当 b 2a 时,必有|b|2|a|. 23(2a4b)等于( ) A5a7b B。

16、3从速度的倍数到数乘向量3.1数乘向量一、选择题1下列说法中正确的是()Aa与a的方向不是相同就是相反B若a,b共线,则baC若|b|2|a|,则b2aD若b2a,则|b|2|a|答案D解析显然当b2a时,必有|b|2|a|.23(2a4b)等于()A5a7b B5a7bC6a12b D6a12b考点向量的线性运算及应用题点向量的线性运算答案D解析利用向量数乘的运算律,可得3(2a4b)6a12b,故选D.3已知P,A,B,C是平面内四点,且,则下列向量一定共线的是()A.与 B.与C.与 D.与考点向量共线定理及其应用题点利用向量共线定理判定向量共线答案B解析因为,所以0,即2,所以与共线4如图,在ABC中,a,b。

17、2.1.4数乘向量一、选择题1.3(2a4b)等于()A.5a7b B.5a7bC.6a12b D.6a12b考点向量的线性运算及应用题点向量的线性运算答案D解析利用向量数乘的运算律,可得3(2a4b)6a12b,故选D.2.在ABC中,如果AD,BE分别为BC,AC上的中线,且a,b,那么等于()A.ab B.abC.ab D.ab答案A解析由题意,得bb()ba,即ba,解得ab.3.设D为ABC所在平面内一点,3,则()A. B.C. D.答案A解析3,3(),即43,.4.如图,AB是O的直径,点C,D是半圆弧AB上的两个三等分点,a,b,则等于()A.ab B.abC.ab D.ab答案D解析连接CD,OD,如图所示.点C,D是半圆弧AB上的两个三等分点,。

18、2.2.3向量的数乘一、选择题1已知a5e,b3e,c4e,则2a3bc等于()A5e B5eC23e D23e答案C解析2a3bc25e3(3e)4e23e.2下列说法中正确的是()Aa与a的方向不是相同就是相反B若a,b共线,则baC若|b|2|a|,则b2aD若b2a,则|b|2|a|考点向量数乘的定义及运算题点向量数乘的定义及几何意义答案D解析显然当b2a时,必有|b|2|a|.33(2a4b)等于()A5a7b B5a7bC6a12b D6a12b考点向量的线性运算及应用题点向量的线性运算答案D解析利用向量数乘的运算律,可得3(2a4b)6a12b,故选D.4已知a,b是不共线的向量,a2b,a(1)b,且A,B,C三点共线,则实数的值为()A1 B。

19、6.3.46.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示 1.下列各组向量中,能作为表示它们所在平面内所有向量的基底的是 A.e12,2,e21,1 B.e11,2,e24,8 C.e11,0,e20,1 D.e11,2,。

20、6 6. .2.32.3 向量的数乘运算向量的数乘运算 1下列说法中正确的是 Aa 与 a 的方向不是相同就是相反 B若 a,b 共线,则 ba C若b2a,则 b 2a D若 b 2a,则b2a 答案 D 2多选下列各式计算正确的有 A7。

【6.2.3向量的数乘运算 课时对点练含答案】相关DOC文档
3.2指数的扩充及其运算性质 课时对点练2含答案
3.2指数的扩充及其运算性质 课时对点练1含答案
4.1 平面向量的坐标表示-4.2 平面向量线性运算的坐标表示 课时对点练含答案
《2.1.5 向量共线的条件与轴上向量坐标运算》课时对点练(含答案)
《2.2.2 向量的正交分解与向量的直角坐标运算》课时对点练(含答案)
《2.3.2 向量数量积的运算律》课时对点练(含答案)
2.2 空间向量的运算(一)课时对点练(含答案)
2.2 空间向量的运算(二)课时对点练(含答案)
6.2.2向量的减法运算 课时对点练(含答案)
6.2.1向量的加法运算 课时对点练(含答案)
7.2.2复数的乘、除运算 课时对点练(含答案)
2.2.3 向量数乘运算及其几何意义 课时对点习(含答案)
3.1 数乘向量 课时对点练含答案
《2.1.4 数乘向量》课时对点练(含答案)
《2.2.3 向量的数乘》课时对点练(含答案)
6.3.4平面向量数乘运算的坐标表示 课时对点练(含答案)
6.2.3向量的数乘运算 课时对点练(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开