,第四章 三角函数、解三角形,非零常数T,f(xT)f(x),T,三角函数的定义域(师生共研),三角函数的单调性(多维探究),1课时作业(三)1.2 第 1 课时 勾股定理 一、选择题12018滨州在直角三角形中,若勾为 3,股为 4,则弦为 ( )A5 B6C7 D82如图 K31,在边长为 1
6.5第1课时相似三角形的周长面积的性质Tag内容描述:
1、1课时作业(三)1.2 第 1 课时 勾股定理 一、选择题12018滨州在直角三角形中,若勾为 3,股为 4,则弦为 ( )A5 B6C7 D82如图 K31,在边长为 1 个单位的小正方形组成的网格中,点 A,B 都是格点,则线段 AB 的长度为( )图 K31A5 B6 C7 D253如图 K32,在ABC 中,C90,AB 的垂直平分线交 AB 于点 D,交 BC 于点E,连接 AE.若 CE5,AC12,则 BE 的长是( )图 K32A5 B10 C12 D134如图 K33,长方形 OABC 的边 OA 的长为 3,边 AB 的长为 2,OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是( )。
2、第1章 直角三角形,1.2 直角三角形的性质和判定(),第1课时 勾股定理,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 勾股定理,知识目标,1通过在方格纸中经历观察、计算、归纳发现勾股定理,会用拼图的方式验证勾股定理 2在理解勾股定理的基础上,会用勾股定理求图形的边长或面积,目标突破,目标一 会验证勾股定理,例1 教材补充例题 如图121是用硬纸板做成的两直角边长分别是a,b,斜边长为c的四个全等的直角三角形和一个边长为c的正方形,请你将它们拼成 一个能证明勾股定理的图形 (1)画出拼成的这个图形的示意图; (2)证明勾股定理,。
3、1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第1课时 三角形的全等和等腰三角形的性质,北师大版八年级下册数学教学课件,学习目标,1.回顾全等三角形的判定和性质; 2.理解并掌握等腰三角形的性质及其推论,能运用 其解决基本的几何问题.(重点),导入新课,情境引入,问题1:图中有些你熟悉的图形吗?它们有什么共同特点?,斜拉桥梁,埃及金字塔,体育观看台架,问题2:建筑工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道其中反映了什。
4、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第 1 课时 平行线分线段成比例定理1图 2727,在ABC 中,点 D,E 分别在边 AB,AC 上,DEBC,若 BD2AD ,则( )图 2727A. B ADAB 12 AEEC 12C. D ADEC 12 DEBC 1222018嘉兴如图 272 8,直线 l1l 2l 3.直线 AC 交 l1,l 2,l 3 于点 A,B,C,直线DF 交 l1,l 2,l 3 于点 D,E,F,已知 , .ABAC 13 EFDE图 27283如图 2729,若ADEACB,且 ,DE10,则 CB 15 .ADAC 23图 27294如图 27210,已知直线 l1l 2l 3,AB 3,BC5,DF16,求 DE 。
5、课时作业(一)1.1 第 1课时 直角三角形的性质和判定 一、选择题1在 RtABC 中,C90,B54,则A 的度数是 ( )链 接 听 课 例 1归 纳 总 结A66 B56 C46 D362在直角三角形中,若斜边和斜边上的中线的长度之和为 9,则斜边上的中线长为( )A3 B4.5 C6 D93具备下列条件的ABC 中,不是直角三角形的是 ( )链 接 听 课 例 2归 纳 总 结AABCBABCCABC123DAB3C4如图 K11,在ABC 中,ABAC8,BC6,AD 平分BAC 交 BC于点 D,E 为 AC的中点,连接 DE,则CDE 的周长为( )图 K11A10 B11 C12 D135如图 K12,ABCADC90,E 是 AC的中点,则( )图 K12A12B。
6、第1章 直角三角形,1.1 直角三角形的性质和判定(),第1课时 直角三角形的性质和判定,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 直角三角形的性质和判定,知识目标,1根据三角形内角和定理,结合直角三角形的一个内角是直角的特征,理解直角三角形两锐角互余的性质 2通过对三角形中角的认识,归纳出“有两个角互余的三角形是直角三角形”的结论,并运用此结论对三角形的形状进行判定 3通过实际测量,对比斜边上的中线、斜边的长度归纳出“直角三角形斜边上的中线等于斜边的一半”的性质,并能灵活应用此性质,目标突破,目标一 理解。
7、,27.2 相似三角形 27.2.1 相似三角形的判定 第1课时,1.理解平行线分线段成比例定理; 2.知道当ABC与DEF的相似比为k时,DEF与ABC的相似比为 .,即对应角相等对应边的比相等我们说ABC与DEF相似,记作 ABCDEF, ABC和DEF的相似比为k, DEF与ABC的相似比为 .,如果A=D, B=E, C=F,,判定两个三角形相似时,是否存在简便的判定方法呢?,问题 如图l1l2 l3,你能否发现在两直线a,b上截得的线段有什么关系?,通过计算可以得到:,由此可得到:,平行线分线段成比例定理:三条平行线截两条直线所得的对应线段的比相等.,说明: 定理的条件是“三条平行线。
8、4.7 相似三角形的性质,第四章 图形的相似,第1课时 相似三角形中的对应线段之比,导入新课,讲授新课,当堂练习,课堂小结,1.明确相似三角形中对应线段与相似比的关系. (重点) 2.能熟练运用相似三角形的性质解决实际问题(难点),学习目标,问题1: ABC与A1B1C1相似吗?,导入新课,相似三角形对应角相等、对应边成比例.,ABC A1B1C1,思考:三角形中,除了角度和边长外,还有哪些几何量?,高、角平分线、中线的长度,周长、面积等,1.CD和C1D1分别是它们的高,你知道 比值是多少吗?,2.如果CD和C1D1分别是他们的对应角平分线呢?3.如果CD和C1D1分。
9、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第 2 课时 相似三角形的判定定理 1,212018利辛县模拟在三角形纸片 ABC 中,AB8,BC4,AC6,按下列方法沿虚线剪下,能使阴影部分的三角形与ABC 相似的是( )2如图 27220,在ABC 与ADE 中,BAC D,要使ABC 与ADE 相似,还需满足下列条件中的( )图 27220A. B ACAD ABAE ACAD BCDEC. D ACAD ABDE ACAD BCAE3如图 27221,网格中的每个小正方形的边长都是 1,每个小正方形的顶点叫做格点ACB 和DCE 的顶点都在格点上,ED 的延长线交 AB 于。
10、第2课时相似三角形的高、中线、角平分线的性质知识点相似三角形对应线段的比1.已知ABCDEF,BAC,EDF的平分线的长度之比为12,则ABC与DEF的相似比为()A.12 B.14 C.21 D.412.若ABCDEF,相似比为32,则对应边上高的比为()A.32 B.35 C.94 D.493.若ABCDEF,且对应中线的比为23,则ABC与DEF的面积比为()A.32 B.23C.49 D.9164.如图6-5-5所示,ABCABC,AB=3a cm,AB=2a cm,AD与AD分别是ABC和ABC的中线,AD与AD的长度之和为15 cm,求AD和AD的长.图。
11、4.7 相似三角形的性质,第四章 图形的相似,第2课时 相似三角形的周长和面积之比,导入新课,讲授新课,当堂练习,课堂小结,1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.(重点) 2.掌握相似三角形的周长比、面积比在实际中的应用.(难点),学习目标,导入新课,问题:我们知道,如果两个三角形相似,它们对应高的比、对应中线的比和对应角平分线的比都等于相似比.那么它们周长的比之间有什么关系?也等于相似比吗?面积之比呢?,A,B,C,A1,B1,C1,问题引入,讲授新课,问题:图中(1)(2)(3)分别是边长为1,2,3的等边三。
12、6.5第1课时相似三角形的周长、面积的性质知识点 1相似三角形(多边形)周长的比1.2019常州 若ABCABC,相似比为12,则ABC与ABC的周长的比为()A.21 B.12C.41 D.142.已知两个五边形相似,其中一个五边形的周长为36,最短边长为4,另一个五边形的最短边长为3,则它的周长为()A.21 B.27 C.30 D.483.2018苏州期末 若ABCABC,AB=2AB,ABC的周长为4,则ABC的周长为.知识点 2相似三角形(多边形)面积的比4.2018广东 在ABC中,D,E分别为边AB,AC的中点,则ADE与ABC的面积之比为()A.12 。