7.5 第 1 课时 三角形的内角和知识点 三角形的内角和1. 如图 751,因为 DE BC,所以DAB_,EAC_又DABBAC EAC180,所以_180.图 7512下列各组角中,哪一组是同一个三角形的内角( )A95,80 ,5 B63 ,70 ,67C34,36,50 D25 ,160
6.5角与角的度量 同步练习含答案Tag内容描述:
1、7.5 第 1 课时 三角形的内角和知识点 三角形的内角和1. 如图 751,因为 DE BC,所以DAB_,EAC_又DABBAC EAC180,所以_180.图 7512下列各组角中,哪一组是同一个三角形的内角( )A95,80 ,5 B63 ,70 ,67C34,36,50 D25 ,160 ,153已知ABC 中,ABC,则ABC 的形状是 ( )A直角三角形 B锐角三角形C等腰三角形 D钝角三角形4已知ABC 中,B 是A 的 2 倍,C 比A 大 20,则A 等于( )A40 B60 C80 D9052018广东如图 752, ABCD,DEC100&。
2、 第四章第四章 几何图形初步几何图形初步 4.3.2 角的比较与运算 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的 1两个锐角的和 A一定是锐角 B一定是直角 C一定是钝角 D可能是锐角 2如果=3,=2,则必有 A= 1 2 B= 3 2 C= 2 3 D= 3 4 3如图,O 是直线 AB 上一点,OC 为任意一条射线,BOC=40 ,OE 平分AOC,OD。
3、初中数学人教版八年级上册第 11章 三角形11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性 同步练习题测试时间:30 分钟一、选择题1.一定在三角形内部的线段是( )A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、两条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线答案 A A 项,锐角三角形的三条高、三条角平分线、三条中线一定在三角形内部,故本选项正确;B 项,钝角三角形的三条高有两条在三角形的外部,故本选项错误;C 项,任意三角形的一条中线。
4、3.1.3两角和与差的正切基础过关1在ABC中,若tanAtanBtanAtanB1,则cosC的值是()A B. C. D答案B解析由tanAtanBtanAtanB1,可得1,即tan(AB)1,AB(0,),AB,则C,cosC.2已知tan(),tan,那么tan等于()A. B. C. D.答案C解析tantan.3已知tan,tan,0,则的值是()A. B. C. D.答案C4若A,B,C是ABC的三个内角,且tanA,tanB是方程3x25x10的两个实数根,则ABC是()A钝角三角形B锐角三角形C直角三角形D无法确定答案A解析tanAtanB,tanAtanB,。
5、3.1.2两角和与差的正弦基础过关1函数f(x)sin(2x)cos(2x)的最小正周期和最大值分别为()A,1 B,C2,1 D2,答案A解析f(x)sin2xcoscos2xsincos2xcossin2xsincos2x,最小正周期T,f(x)max1.2已知0,又sin,cos(),则sin等于()A0 B0或C. D0或答案C解析0,sin,cos(),cos,sin()或.sinsin()sin()coscos()sin或0.,sin.3已知coscossinsin0,那么sincoscossin的值为()A1 B0 C1 D1答案。
6、31和角公式31.1两角和与差的余弦基础过关1化简cos(45)cos(15)sin(45)sin(15)得()A. B C. D答案A解析原式cos(45)cos(15)sin(45)sin(15)cos(45)(15)cos(60).2计算cos70cos335sin110sin25的结果是()A1 B. C. D.答案B解析原式cos70cos25sin70sin25cos(7025)cos45.3若cos(),cos2,并且、均为锐角且,则的值为()A. B. C. 。
7、3.3三角函数的积化和差与和差化积基础过关1sin70cos20sin10sin50的值为()A. B. C. D.答案A解析sin70cos20sin10sin50(sin90sin50)(cos60cos40)sin50cos40.2cos72cos36的值为()A32 B.C D32答案C解析原式2sinsin2sin54sin182cos36cos722.3在ABC中,若sinAsinBcos2,则ABC是()A等边三角形 B等腰三角形C不等边三角形D直角三角形答案B解析由已知等式得cos(AB)。
8、4.5角的比较与补(余)角1. 已知A2512,B25.12,C25.2,A,B,C的大小关系是( ) AABC BACB CACB DBAC 2如图,若AOBCOD,那么( )A12 B12 C12 D1与2的大小不能确定3. 已知ABC30,BD是ABC的角平分线,则ABD_ 4如图,OB是AOC的平分线,OD是COE的平分线,如果AOB40,COE60,则BOD的度数为( ) A50 B60 C65 D705. 如图,已知直线AB,CD相交于点O,OE平分COB,若EOB55,则BOD的度数是( ) A35 B55°。
9、4.5 角的比较与补(余)角基础练习1. 如图,射线 OC,OD 分别在AOB 的内部,外部,下列各式错误的是 ( ).图AAOBAOC,D 错误故选 D.此题主要考查了角的大小比较,解题的关键是掌握角的大小比较方法2. 解:在AOB 的内部任取一点 C,作射线 OC,那么有AOBAOC.故选 D.此题主要考查了角的大小比较,解题的关键是掌握角的大小比较方法3. 解:因为AOBCOD,所以1BOD2 BOD,所以12.故选 B.此题考查了角的和差,掌握等量代换方法是解题的关键.4. 解:由角的平分线的几何表示可知:PAM NAP;PAN MAN;MAP MAN ;MAN2MAP,12 12都能表示 AP 是MAN 的平。
10、1.3.2三角函数的图象与性质(二) 基础过关1.设函数f(x)cos,则下列结论错误的是()A.f(x)的一个周期为2B.yf(x)的图象关于直线x对称C.f(x)的一个零点为xD.f(x)在单调递减解析函数f(x)cos的图象可由ycos x的图象向左平移个单位得到,如图可知,f(x)在上先递减后递增,D错误.答案D2.设M和m分别表示函数ycos x1的最大值和最小值,则Mm等于()A.2 B. C. D.2解析因为函数g(x)cos x的最大值和最小值分别为1和1,所以函数ycos x1的最大值和最小值分别为和.因此Mm2.答案A3.函数y2sin为偶函数,则绝对值最小的值为_.解析函数为偶函数,则k,kZ,k,kZ,。
11、1.3.2三角函数的图象与性质(一) 基础过关1.在同一平面直角坐标系内,关于函数ysin x,x0,2与ysin x,x2,4的图象描述正确的是()A.重合B.形状相同,位置不同C.关于y轴对称D.形状不同,位置不同解析根据正弦曲线的作法可知函数ysin x,x0,2与ysin x,x2,4的图象只是位置不同,形状相同.只有B正确.答案B2.函数ysin x,x的简图是()解析函数ysin x与ysin x的图象关于x轴对称,故选D.答案D3.方程sin x的根的个数是_.解析在同一坐标系内画出y和ysin x的图象如图所示:根据图象可知方程有7个根.答案74.函数y的定义域是_.解析由2cos x10,得cos 。
12、1.3.2三角函数的图象与性质(三) 基础过关1.下列函数中,既是以为周期的奇函数,又是(0,)上的增函数的是()A.ytan x B.ycos xC.ytan D.y|sin x|解析由于ytan x与ytan 是奇函数,但是只有ytan x的周期为,ycos x与y|sin x|是偶函数.答案A2.下列不等式中正确的是()A.tantan B.tan 1tan 2C.0.而0,tan 2tan 2,B正确;对于C,tan 40,而tan 30,C错;对于D,tan 281tan(180101)tan 101。
13、3.1两角和与差的三角函数3.1.1两角和与差的余弦基础过关1.设,若sin ,则cos的值为()A. B. C. D.解析,sin ,cos ,原式cos sin .答案A2.化简sin(45)sin(15)cos(45)cos(15)等于()A. B. C. D.解析原式cos(45)cos(15)sin(45)sin(15)cos(45)(15)cos 30.答案D3.已知,sin(),sin,则cos_.解析,.又sin(),sin,cos(),cos.coscoscos()cos。
14、3.1.2两角和与差的正弦基础过关1.sin 119sin 181sin 91sin 29的值为()A. B. C. D.解析原式sin(2990)sin(1180)sin(190)sin 29cos 29(sin 1)cos 1sin 29(sin 29cos 1cos 29sin 1)sin 30.答案A2.若cos xcos ysin xsin y,(sin xcos ycos xsin y)(cos xcos ysin xsin y),则sin(xy)等于()A. B. C. D.解析由题意得cos(xy),sin(xy)cos(xy),故sin(xy).答案B3.的值为_。
15、3.1.3两角和与差的正切基础过关1.A,B,C是ABC的三个内角,且tan A,tan B是方程3x25x10的两个实数根,则ABC是()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定解析tan Atan B,tan Atan B,tan(AB),tan Ctan(AB),C为钝角.答案A2.若tan ,tan 是方程x22x40的两根,则|tan()|()A. B. C. D.2解析tan ,tan 是方程x22x40的两根,tan tan 2,tan tan 4,解得tan 1,tan 1;或tan 1,tan 1;tan(),|tan()|.答案A3.已知tan tan 2,tan()4,则tan tan _.解析4tan(),t。
16、4.3.2 角的度量与计算第 1 课时 角的度量与计算1.下列各角中,是钝角的是( )A. 周角 B. 平角 C.平角 D. 平角4132412.下列说法正确的是( )A.平角大于周角 B.大于直角的角是钝角C.锐角一定小于直角 D.钝角不一定大于锐角3.把一个周角 n 等分,每份是 15,则 n=_.4. 平角=_,20=_平角=_周角.315.如图,锐角的个数共有_个.6.将 31.39化成度分秒表示,结果是( )A.3139 B.31234C.312324 D.31237.若1=2512,2=25.12,3=25.2,则下列结论正确的是( )A.1=2 。