欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

6.5相似三角形的性质2ppt课件

4.5 相似三角形的性质及其应用(2)相似三角形的周长之比等于相似比,面积之比等于相似比的平方1.两个相似三角形的一组对应边分别为 5cm 和 3cm,若它们的面积之和为 136cm2,则较大的三角形的面积是(D).A.36cm2 B.85cm2 C.96cm2 D.100cm22.如图所示,已知A

6.5相似三角形的性质2ppt课件Tag内容描述:

1、4.5 相似三角形的性质及其应用(2)相似三角形的周长之比等于相似比,面积之比等于相似比的平方1.两个相似三角形的一组对应边分别为 5cm 和 3cm,若它们的面积之和为 136cm2,则较大的三角形的面积是(D).A.36cm2 B.85cm2 C.96cm2 D.100cm22.如图所示,已知ABCDEF,ABDE=12,则下列等式中,一定成立的是(D).(第 2 题) (第 3 题) (第 4题)3.如图所示,在ABCD 中,点 E 在边 DC 上,DE EC=31,连结 AE 交 BD 于点 F,则DEF 的面积与BAF 的面积之比为( B).A.34 B.916 C.91 D.314.如图所示,在ABC 中,D 是 AB 边上的一点,若ACD=B,AD=1。

2、,相似三角形的性质,相似三角形的性质 1 相似三角形的对应角相等,对应边成比例. 2 相似三角形对应高的比,对应中线的比与 对应角平分线的比都等于相似比. 3 相似三角形周长的比等于相似比, 面积比等于相似比的平方.,复习,练习:,ABC中,MNBC,ADBC, 则,M,N,E,议一议:,如图,四边形ABCD与四边形ABCD相似,且相似比为k,它们周长的比、面积的比与相似比有什么关系?,如果把四边形换成五边形,你刚才的结论是否仍然成立呢?,相似多边形的周长比等于 , 面积比等于 _.,相似比,相似比的平方,相似多边形的性质:,如图, ABC 是一块锐角三角形余料,边 BC12。

3、27.2.1 相似三角形的判定 第2课时,1.理解定理“平行于三角形一边的直线与其他两边(或延长线)相交,所构成的三角形与原三角形相似”,“三边对应成比例的两个三角形相似”; 2.培养学生与他人交流、合作的意识.,1. 对应角_, 对应边 的两个三角形, 叫做相似三角形 .,相等,的比相等,2.相似三角形的_, 各对应边 .,对应角相等,的比相等,3.如何识别两三角形是否相似?, DEBC, ADEABC.,平行于三角形一边的直线和其他两边(或两边的延长线) 相交,所构成的三角形与原三角形相似.,思考:有没有其他简单的办法判断两个三角形相似?,是否有ABCABC?,A,B。

4、4.7 相似三角形的性质,第四章 图形的相似,第2课时 相似三角形的周长和面积之比,导入新课,讲授新课,当堂练习,课堂小结,1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.(重点) 2.掌握相似三角形的周长比、面积比在实际中的应用.(难点),学习目标,导入新课,问题:我们知道,如果两个三角形相似,它们对应高的比、对应中线的比和对应角平分线的比都等于相似比.那么它们周长的比之间有什么关系?也等于相似比吗?面积之比呢?,A,B,C,A1,B1,C1,问题引入,讲授新课,问题:图中(1)(2)(3)分别是边长为1,2,3的等边三。

5、 3.5 3.5 相似三角形的应用相似三角形的应用 第第3 3章章 图形的相似图形的相似 教学目标教学目标 1.1.会应用相似三角形的性质和判定解决实际问题会应用相似三角形的性质和判定解决实际问题 2.2.利用相似三角形解决实际问题中不能直接测量的物利用相似三角形解决实际问题中不能直接测量的物 体的长度的问题,让学生体会数学转化的思想。体的长度的问题,让学生体会数学转化的思想。 重点:重点:运用。

6、 3.4 3.4 相似三角形的判定与性质相似三角形的判定与性质 第第3 3章章 图形的相似图形的相似 3.4.1 3.4.1 相似三角形的判定相似三角形的判定 教学目标教学目标 1.1. 了解相似三角形的判定方法会用平行法判了解相似三角形的判定方法会用平行法判 定两个三角形相似定两个三角形相似 重点:重点: 用平行法判定两个三角形相似用平行法判定两个三角形相似 难点:难点:平行法判定三角形相似定。

7、27.2 相似三角形,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.2.2 相似三角形的性质,1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点),学习目标,导入新课,复习引入,1. 相似三角形的判定方法有哪几种?,定义:对应边成比例,对应角相等的两个三角 形相似,平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似,三边成比例的两个三角形相似,两边成比例且夹角相等的两个三角形相似,两角分别相等的两个三角形。

8、 3.4 3.4 相似三角形的判定与性质相似三角形的判定与性质 第第3 3章章 图形的相似图形的相似 3.4.2 3.4.2 相似三角形的性质相似三角形的性质 教学目标教学目标 掌握相似三角形对应线段(高、中线、角平掌握相似三角形对应线段(高、中线、角平 分线)及相似三角形的面积、周长比与相似分线)及相似三角形的面积、周长比与相似 比之间的关系比之间的关系. . 重点难点:重点难点:相似三角形性。

9、初中数学,九年级(下册),6.5 相似三角形的性质(2),作 者:霍 云(连云港市西苑中学),回顾“相似三角形的面积比 等于相似比的平方”这个结论的探究过程,你有什么发现?,回顾旧知,如图,ABCABC,ABC与ABC的相似比是2:3,则ABC与ABC的面积比是多少?你的依据是什么?,6.5 相似三角形的性质(2),证一证,如图,ABC ABC, ABC与 ABC的相似比是k,AD、A D是对应高,6.5 相似三角形的性质(2),相似三角形对应高的比等于相似比,发现新知,三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,6.5 相似三角形的性质(2),ABCAB。

10、,苏科数学,6.5相似三角形的性质(1),问题情境,1.关于相似三角形,我们已经研究了什么? 2.关于相似三角形的性质,我们如何进行研究? 3.所有的正方形都相似吗?如果正方形的边长分别是1、2、3、4,它们的周长和面积之间有怎样的关系?,如图,点D、E、F分别是ABC各边的中点 (1)DEF与ABC相似吗?为什么? (2)这两个三角形的相似比是多少? (3)这两个三角形的周长、面积有什么关系?,观察与讨论,继续取DEF的各边中点M、N、P,得到上图,此时:(1)MNP与ABC相似吗?为什么?(2)这两个三角形的相似比是多少?(3)这两个三角形的周长。

11、,苏科数学,6.5相似三角形的性质(2),问题情境,问题1在探索“相似三角形的面积比等于相似比的平方”这个结论的过程,我们发现“相似三角形对应高的比等于相似比”,记得证明的方法了吗? 问题2三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,相似三角形对应高的比等于相似比,三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,ABCABC ,AD和AD分别 是ABC和ABC的中线,设相似 比为k,那么,你能有条理地表达理由吗?,讨论一:,观察与思考,ABCABC ,AD和AD分别是ABC和ABC的角平分线,设 相似比。

【6.5相似三角形的性质2ppt课件】相关PPT文档
27.2.1相似三角形的判定(第2课时)课件(人教版九年级下)
4.7相似三角形的周长和面积之比(第2课时)课件
3.5相似三角形的应用ppt课件(湘教版九年级上册)
3.4.1相似三角形的判定ppt课件(湘教版九年级上册)
【人教版】数学九年级下:27.2.2相似三角形的性质ppt课件
3.4.2相似三角形的性质ppt课件(湘教版九年级上册)
6.5相似三角形的性质(2)同步课件(苏科版九年级数学下册)
6.5相似三角形的性质(1)ppt课件
6.5相似三角形的性质(2)ppt课件
【6.5相似三角形的性质2ppt课件】相关DOC文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开