【作业 1】下 列 说 法 中 , 正 确 的 是 ( ) A 每 个 命 题 不 一 定 都 有 逆 命 题 B 每 个 定 理 都 有 逆 定 理 C 真 命 题 的 逆 命 题 仍 是 真 命 题 D 假 命 题 的 逆 命 题 未 必 是 假 命 题 【答案】D 【作业 2】下 列 定 理
版-几何证明基础2-学生版Tag内容描述:
1、 【作业 1】下 列 说 法 中 , 正 确 的 是 ( ) A 每 个 命 题 不 一 定 都 有 逆 命 题 B 每 个 定 理 都 有 逆 定 理 C 真 命 题 的 逆 命 题 仍 是 真 命 题 D 假 命 题 的 逆 命 题 未 必 是 假 命 题 【答案】D 【作业 2】下 列 定 理 中 , 没 有 逆 定 理 的 是 ( ) A 内 错 角 相 等 , 两 直 线 平 行 B 直 角 三 角 形 中 两 锐 角 互 余 c 相 反 数 的 绝 对 值 相 等 D 同 位 角 相 等 , 两 直 线 平 行 【答案】B 【作业 3】如图,AC=AD,BC=BD,则( ) A.CD 垂直平分 AD B.AB 垂直平分 CD C.CD 平分ACB D.以上结论均。
2、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 几何证明基础(2) 几何证明基础(2) 知识模块:知识模块:逆定理和命题逆定理和命题 1 1、 互逆命题、原命题、逆命题互逆命题、原命题、逆命题 (1)互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一问题 的结论又是第二个命题的题设,那么这个命题叫做互逆命题。如果把其中一个命题叫 做原命题,那么另一个命题叫做它的逆命题。 (2)一个命题(定理)的逆命题(逆定理)并不是唯一的。这是因为一个命题的题设中可能 有两个或多个条件,结论也可能不。
3、E D C B A 【作业 1】下列命题中,真命题的个数是( ) (1)等腰三角形两腰上的高相等; (2)在空间中,垂直于同一直线的两条直线平行; (3)两条直线被第三条直线所截,内错角相等; (4)一个角的两边与另一个角的两边分别平行,则这两个角相等 A1 B2 C3 D4 【作业 2】下列语句中哪个是命题( ) A联结A B、两点 B等角的余角相等吗? C对顶角相等 D代数式0a a 叫二次根式 【作业 3】下列命题中,假命题是( ) A平面中,过一点有且只有一条直线平行于已知直线 B平面中,过一点有且只有一条直线垂直于已知直线 C平面中,垂直于同一条。
4、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 几何证明基础(1) 几何证明基础(1) F E D CB A CB A 知识模块:知识模块:演绎证明的概念演绎证明的概念 1、演绎证明是指:从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推 导出某结论为正确的过程。演绎证明就是常说的“证明” ,是一种严格的数学说理,核心 是由因导果,言必有据。 2、证明一个几何问题的方法常用综合法或分析法。 3、综合法:由题设逐步推导到结论的一种证明方法。 若 A 则 N,ABCDEMN. 4、分析法:由结论逐步追溯到题设的一种方法。分。
5、 【作业 1】下 列 说 法 中 , 正 确 的 是 ( ) A 每 个 命 题 不 一 定 都 有 逆 命 题 B 每 个 定 理 都 有 逆 定 理 C 真 命 题 的 逆 命 题 仍 是 真 命 题 D 假 命 题 的 逆 命 题 未 必 是 假 命 题 【作业 2】下 列 定 理 中 , 没 有 逆 定 理 的 是 ( ) A 内 错 角 相 等 , 两 直 线 平 行 B 直 角 三 角 形 中 两 锐 角 互 余 c 相 反 数 的 绝 对 值 相 等 D 同 位 角 相 等 , 两 直 线 平 行 【作业 3】如图,AC=AD,BC=BD,则( ) A.CD 垂直平分 AD B.AB 垂直平分 CD C.CD 平分ACB D.以上结论均不对 【作业 4】如图所。
6、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 几何证明基础(2) 几何证明基础(2) 知识模块:知识模块:逆定理和命题逆定理和命题 1 1、 互逆命题、原命题、逆命题互逆命题、原命题、逆命题 (1)互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一问题 的结论又是第二个命题的题设,那么这个命题叫做互逆命题。如果把其中一个命题叫 做原命题,那么另一个命题叫做它的逆命题。 (2)一个命题(定理)的逆命题(逆定理)并不是唯一的。这是因为一个命题的题设中可能 有两个或多个条件,结论也可能不。