第一章 数列,1.3.2 等比数列的前n项和(二),1.熟练应用等比数列前n项和公式的有关性质解题. 2.会用错位相减法求和.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列前n项和公式的函数特征,若数列an的前n项和Sn2n1,那么数列an是不是等比数列? 若
北师大版高中数学必修五课件1.2.1 等差数列二Tag内容描述:
1、第一章 数列,1.3.2 等比数列的前n项和(二),1.熟练应用等比数列前n项和公式的有关性质解题. 2.会用错位相减法求和.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列前n项和公式的函数特征,若数列an的前n项和Sn2n1,那么数列an是不是等比数列? 若数列an的前n项和Sn2n11呢?,答案,梳理,当公比q1时,设A ,等比数列的前n项和公式是SnA(qn1). 当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列前n项和的性质,思考,若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案,设。
2、第一章 数列,1.3.1 等比数列(二),1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等比数列通项公式的推广,我们曾经把等差数列的通项公式做过如下变形:ana1(n1)dam(nm)d. 等比数列也有类似变形吗?,答案,思考2,我们知道等差数列的通项公式可以变形为andna1d,其单调性由公差的正负确定;等比数列的通项公式是否也可做类似变形?,答案,设等比数列an的首项为a1,公比为q. 则ana1qn1 qn,其形式类似于指数。
3、第二章 2.2 等差数列,2.2.2 等差数列的前n项和(二),学习目标 1.进一步熟练掌握等差数列的通项公式和前n项和公式. 2.会解等差数列前n项和的最值问题. 3.理解an与Sn的关系,能根据Sn求an.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 数列中an与Sn的关系,思考 已知数列an的前n项和Snn2,怎样求a1,an?,答案 a1S11; 当n2时,anSnSn1n2(n1)22n1, 又n1时也适合上式, 所以an2n1,nN.,梳理 对任意数列an,Sn与an的关系可以表示为,S1,SnSn1,知识点二 等差数列前n项和的最值,答案 由二次函数的性质可以得出: 当a10,d0时,Sn先减后。
4、第一章 数列,1.2.2 等差数列的前n项和(一),1.掌握等差数列前n项和公式及其获取思路. 2.经历公式的推导过程,体验从特殊到一般的研究方法,学会观察、归纳、反思. 3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求另外两个.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等差数列前n项和公式的推导,高斯用123100(1100)(299)(5051)10150迅速求出了等差数列前100项的和.但如果是求123n,不知道共有奇数项还是偶数项怎么办?,答案,不知道共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相。
5、第一章 数列,1.2.2 等差数列的前n项和(二),1.进一步熟练掌握等差数列的通项公式和前n项和公式. 2.会解等差数列前n项和的最值问题. 3.理解an与Sn的关系,能根据Sn求an.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 数列中an与Sn的关系,已知数列an的前n项和Snn2,怎样求a1,an?,答案,a1S11; 当n2时,anSnSn1n2(n1)22n1, 又n1时也适合上式,所以an2n1,nN.,梳理,对任意数列an,Sn与an的关系可以表示为,an,(n1),(n2,nN).,S1,SnSn1,知识点二 等差数列前n项和的最值,由二次函数的性质可以得出:当a10,d0时,Sn先。
6、第一章 数列,1.2.1 等差数列(一),1.理解等差数列的定义. 2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题. 3.掌握等差中项的概念,深化认识并能运用.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等差数列的概念,给出以下三个数列: (1)0,5,10,15,20; (2)4,4,4,4; (3)18,15.5,13,10.5,8,5.5. 它们有什么共同的特征?,答案,从第2项起,每项与它的前一项的差是同一个常数.,梳理,从第 项起,每一项与前一项的差等于同一个 ,这个数列称为等差数列,这个常数为等差数列的 ,公差通常用。
7、第一章 数列,1.2.1 等差数列(二),1.能根据等差数列的定义推出等差数列的常用性质. 2.能运用等差数列的性质解决有关问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等差数列通项公式的推广,已知等差数列an的首项a1和公差d能表示出通项ana1(n1)d,如果已知第m项am和公差d,又如何表示通项an?,答案,设等差数列的首项为a1,则ama1(m1)d, 变形得a1am(m1)d, 则ana1(n1)dam(m1)d(n1)d am(nm)d.,思考2,由思考1可得d ,d ,你能联系直线的斜率解释一下这两个式子的几何意义吗?,答案,等差数列通项公式可变形为andn。