第一章 数列,1.2.2 等差数列的前n项和(一),1.掌握等差数列前n项和公式及其获取思路. 2.经历公式的推导过程,体验从特殊到一般的研究方法,学会观察、归纳、反思. 3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求另外两个.,学习目标,题型探究,问题导学,内容索引,
北师大版高中数学必修五课件1.3.1 等比数列一Tag内容描述:
1、第一章 数列,1.2.2 等差数列的前n项和(一),1.掌握等差数列前n项和公式及其获取思路. 2.经历公式的推导过程,体验从特殊到一般的研究方法,学会观察、归纳、反思. 3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求另外两个.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等差数列前n项和公式的推导,高斯用123100(1100)(299)(5051)10150迅速求出了等差数列前100项的和.但如果是求123n,不知道共有奇数项还是偶数项怎么办?,答案,不知道共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相。
2、第一章 数列,章末复习课,1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识. 2.提高解决等差数列、等比数列问题的能力,培养综合运用知识解决问题的能力.,学习目标,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 知识网络,知识点二 对比归纳等差数列和等比数列的基本概念和公式,知识点三 本章公式推导和解题过程中用到的基本方法和思想,1.在求等差数列和等比数列的通项公式时,分别用到了 法和 法; 2.在求等差数列和等比数列的前n项和时,分别用到了 法和 法. 3.等差数列和等比数列各自都涉及5个量,已知其中任意 个求。
3、章末复习,第一章 数 列,学习目标 1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识. 2.提高解决等差数列、等比数列问题的能力. 3.依托等差数列、等比数列解决一般数列的常见通项、求和等问题,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.等差数列和等比数列的基本概念与公式,2.数列中的基本方法和思想 (1)在求等差数列和等比数列的通项公式时,分别用到了 法和 法; (2)在求等差数列和等比数列的前n项和时,分别用到了 法和_法; (3)等差数列和等比数列各自都涉及5个量,已知其中任意 个求其余_ 个,用到了方程思想; (4)在。
4、第一章 数列,1.2.1 等差数列(一),1.理解等差数列的定义. 2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题. 3.掌握等差中项的概念,深化认识并能运用.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等差数列的概念,给出以下三个数列: (1)0,5,10,15,20; (2)4,4,4,4; (3)18,15.5,13,10.5,8,5.5. 它们有什么共同的特征?,答案,从第2项起,每项与它的前一项的差是同一个常数.,梳理,从第 项起,每一项与前一项的差等于同一个 ,这个数列称为等差数列,这个常数为等差数列的 ,公差通常用。
5、第二章 2.3 等比数列,2.3.2 等比数列的前n项和(一),学习目标 1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式,思考 对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案 比较两式易知,两式相减能消去同类项,解出S64,,梳理 设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn。
6、第一章 数列,1.3.2 等比数列的前n项和(二),1.熟练应用等比数列前n项和公式的有关性质解题. 2.会用错位相减法求和.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列前n项和公式的函数特征,若数列an的前n项和Sn2n1,那么数列an是不是等比数列? 若数列an的前n项和Sn2n11呢?,答案,梳理,当公比q1时,设A ,等比数列的前n项和公式是SnA(qn1). 当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列前n项和的性质,思考,若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案,设。
7、第一章 数列,1.3.2 等比数列的前n项和(一),1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,梳理,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,知识点二 等比数列的前n项和公。
8、第一章 数列,1.3.1 等比数列(二),1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等比数列通项公式的推广,我们曾经把等差数列的通项公式做过如下变形:ana1(n1)dam(nm)d. 等比数列也有类似变形吗?,答案,思考2,我们知道等差数列的通项公式可以变形为andna1d,其单调性由公差的正负确定;等比数列的通项公式是否也可做类似变形?,答案,设等比数列an的首项为a1,公比为q. 则ana1qn1 qn,其形式类似于指数。