第2课时 二元一次不等式组表示的平面区域,第三章 4.1 二元一次不等式(组)与平面区域,学习目标 1.理解并会画二元一次不等式组表示的平面区域. 2.能把一些常见条件转化为二元一次不等式组. 3.能把实际问题中的约束条件抽象为二元一次不等式组,问题导学,达标检测,题型探究,内容索引,问题导学,知识
北师大版高中数学必修一课件3.4 第2课时 对数的运算Tag内容描述:
1、第2课时 二元一次不等式组表示的平面区域,第三章 4.1 二元一次不等式(组)与平面区域,学习目标 1.理解并会画二元一次不等式组表示的平面区域. 2.能把一些常见条件转化为二元一次不等式组. 3.能把实际问题中的约束条件抽象为二元一次不等式组,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 二元一次不等式组所表示的平面区域,1.因为同侧同号,异侧异号,所以可以用特殊点检验,判断AxByC 0的解集到底对应哪个区域.当C0时,一般取原点(0,0),当C0时,常取点(0,1)或(1,0). 2.二元一次不等式组的解集是组成该不等式组的各不等式解。
2、第2课时 直线方程的两点式和一般式,第二章 1.2 直线的方程,学习目标 1.掌握直线方程的两点式和一般式. 2.了解平面直角坐标系中任意一条直线都可以用关于x,y的二元一次方程来表示. 3.能将直线方程的几种形式进行互相转换,并弄清各种形式的应用范围.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线方程的两点式,思考1 已知两点P1(x1,y1),P2(x2,y2),其中x1x2,y1y2,求通过这两点的直线方程.,思考2 过点(1,3)和(1,5)的直线能用两点式表示吗?为什么?过点(2,3),(5,3)的直线呢? 答案 不能, 因为110,而0不能做分母. 过。
3、第2课时 余弦定理的变形及应用,第二章 1.2 余弦定理,学习目标 1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦定理、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 余弦定理及其推论,1.a2 ,b2 ,c2 .2.cos A ;cos B ;cos C . 3.在ABC中,c2a2b2C为 ;c2a2b2C为 ;c2a2b2 C为 .,b2c22bccos A,c2a22cacos B,a2b22abcos C,直角,钝角,锐角,知识点二 余弦定理及其变形的使用,思考 在解题过程中我们会遇到各种各样的条件,那么。
4、第2课时 圆与圆的位置关系,第二章 2.3 直线与圆、圆与圆的位置关系,学习目标 1.理解圆与圆的位置关系的种类. 2.掌握圆与圆的位置关系的代数判定方法与几何判定方法,能够利用上述方法判定两圆的位置关系. 3.体会根据圆的对称性灵活处理问题的方法和它的优越性.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 两圆位置关系的判定,思考 圆与圆的位置关系有几种?如何判断圆与圆的位置关系? 答案 圆与圆的位置关系有五种,分别为:相离、外切、相交、内切、内含.可根据圆心距与两圆半径的和差关系判定.,梳理 两圆位置关系的判定两圆。
5、第2课时 线性规划思想的拓展,第三章 4.2 简单线性规划,学习目标 1.会处理含参数的线性规划问题. 2.会求常见的非线性规划的最优解,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 非线性约束条件,思考 类比探究二元一次不等式表示平面区域的方法,画出约束条件(xa)2(yb)2r2的可行域,答案,答案,梳理 非线性约束条件的概念:约束条件不是 不等式,这样的约束条件称为非线性约束条件,二元一次,知识点二 非线性目标函数,答案,梳理 下表是一些常见的非线性目标函数.,在y轴上的截距,(x,y),(a,b),平方,(x,y),(a,b),在y轴上,的截距最。
6、3.2 对数与对数函数 3.2.1 对数及其运算 第2课时 积、商、幂的对数和换底公式与自然对数,学习目标 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算. 2.了解换底公式,能用换底公式将一般对数化为自然对数或常用对数.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 在指数的运算性质中:,预习导引 1.对数的运算性质 如果a0,且a1,M0,N0.那么: (1)loga(MN) . (2)Loga . (3)logaMn (nR). 2.换底公式 logab (a0,且a1;c0,且c1).,nlogaM,logaMlogaN,logaMlogaN,3.自然对。
7、5.1 对数函数的概念 5.2 对数函数ylog2x的图像和性质,第三章 5 对数函数,学习目标 1.理解对数函数的概念. 2.掌握对数函数的性质. 3.了解对数函数在生产实际中的简单应用. 4.了解反函数的概念及它们的图像特点.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 对数函数的概念,思考 已知函数y2x,那么反过来,x是否为关于y的函数?,答案 由于y2x是单调函数,所以对于任意y(0,)都有唯一确定的x与之对应,故x也是关于y的函数,其函数关系式是xlog2y,此处y(0,).,梳理 一般地,我们把 叫作对数函数,其中x是自变量,函数的定义域是 。
8、学习目标 1.进一步加深理解对数函数的概念. 2.掌握对数函数的性质及其应用.,3.2 对数与对数函数 3.2.2 对数函数 第2课时 对数函数及其性质的应用,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 对数函数的图象和性质,(0,),(1,0),0,增函数,减函数,R,要点一 对数值的大小比较 例1 比较下列各组中两个值的大小: (1)ln 0.3,ln 2; 解 因为函数yln x是增函数,且0.32, 所以ln 0.3ln 2.,(2)loga3.1,loga5.2(a0,且a1); 解 当a1时,函数ylogax在(0,)上是增函数,又3.15.2,所以lo。
9、第1课时 集合的含义,第一章 1.1 集合的含义与表示,学习目标 1.了解集合与元素的含义. 2.理解集合中元素的特征,并能利用它们进行解题. 3.理解集合与元素的关系. 4.掌握数学中一些常见的集合及其记法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 集合的概念,有首歌中唱道“他大舅他二舅都是他舅”,在这句话中,谁是集合?谁是集合中的元素?,答案,答案 “某人的舅”是一个集合,“某人的大舅、二舅”都是这个集合中的元素.,元素与集合的概念 (1)集合:一般地, 称为集合.集合常用大写字母A,B,C,D,标记. (2)元素:集。
10、第2课时 集合的表示,第一章 1.1 集合的含义与表示,学习目标 1.了解空集、有限集、无限集的概念. 2.掌握用列举法表示有限集. 3.理解描述法的格式及其适用情形. 4.学会在不同的集合表示法中作出选择和转换.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 集合的分类,集合xR|x20呢?,答案,答案 0个;1个;无限多个.,按集合中的元素个数分类,不含有任何元素的集合叫作空集,记作;含有有限个元素的集合叫有限集;含有无限个元素的集合叫无限集.,梳理,思考,知识点二 列举法,要研究集合,要在集合的基础上研究其他问题,首先要。
11、第1课时 对 数,第三章 4 对 数,学习目标 1.了解对数的概念. 2.会进行对数式与指数式的互化. 3.会求简单的对数值,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 对数的概念,思考 解指数方程:3x .可化为 ,所以x .那么你会解3x2吗?,答案 不会,因为2难以化为以3为底的指数式,因而需要引入对数概念,梳理 (1)对数的概念 一般地,如果a(a0,a1)的b次幂等于N,即abN,那么数b叫作_,记作 .其中a叫作 ,N叫作 (2)常用对数与自然对数 通常将以10为底的对数叫作 ,N的常用对数log10N简记作 . 以e为底的对数称为 ,N的自然对数logeN简。
12、第2课时 对数的运算,第三章 4 对 数,学习目标 1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件. 2.掌握换底公式及其推论. 3.能熟练运用对数的运算性质进行化简求值.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 对数运算性质,思考 有了乘法口诀,我们就不必把乘法还原成为加法来计算.那么,有没有类似乘法口诀的东西,使我们不必把对数式还原成指数式就能计算?,答案 有.例如,设logaMm,logaNn, 则amM,anN,MNamanamn, loga(MN)mnlogaMlogaN. 得到的结论loga(MN)logaMlogaN可以当公式直接进行对数运算.,梳理 。