章末复习,第二章 圆锥曲线与方程,学习目标 1.梳理本章知识要点,构建知识网络. 2.进一步理解并掌握圆锥曲线的定义、标准方程及简单性质. 3.掌握简单的直线与圆锥曲线位置关系问题的解决方法,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.椭圆、双曲线、抛物线的定义、标准方程、简单性质,2.椭
北师大版高中数学选修1-1课件2.1.1 椭圆及其标准方程Tag内容描述:
1、章末复习,第二章 圆锥曲线与方程,学习目标 1.梳理本章知识要点,构建知识网络. 2.进一步理解并掌握圆锥曲线的定义、标准方程及简单性质. 3.掌握简单的直线与圆锥曲线位置关系问题的解决方法,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.椭圆、双曲线、抛物线的定义、标准方程、简单性质,2.椭圆的焦点三角形,(2)焦点三角形的周长L2a2c.,3.双曲线及渐近线的设法技巧,(0),4.抛物线的焦点弦问题 抛物线过焦点F的弦长|AB|的一个重要结论. (1)y22px(p0)中,|AB| . (2)y22px(p0)中,|AB|x1x2p. (3)x22py(p0)中,|AB| . (4)x22py(p0)中,|AB|。
2、2 导数的概念及其几何意义,第三章 变化率与导数,学习目标 1.理解导数的概念以及导数和变化率的关系. 2.会计算函数在某点处的导数. 3.理解导数的几何意义,会求曲线上某点处的切线方程,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 导数的概念,思考 平均变化率与瞬时变化率有何区别、联系?,梳理 导数的定义 函数yf(x)在x0点的 是函数yf(x)在x0点的导数用符号表示,记作:,瞬时变化率,f(x0),知识点二 导数的几何意义,如图,Pn的坐标为(xn,f(xn)(n1,2,3,4,),P的坐标为(x0,f(x0),直线PT为过点P的切线,思考1 割线PPn的斜率kn。
3、第2课时 椭圆简单性质的应用,第二章 1.2 椭圆的简单性质,学习目标 1.进一步巩固椭圆的简单性质. 2.掌握直线与椭圆位置关系等相关知识,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 点与椭圆的位置关系,知识点二 直线与椭圆的位置关系,思考 类比直线与圆的位置关系,给出直线与椭圆的位置关系,答案 有三种位置关系:相离、相切和相交,梳理 判断直线和椭圆位置关系的方法,当0时,方程有 ,直线与椭圆 ; 当0时,方程有 ,直线与椭圆 ; 当0时,方程 ,直线与椭圆 ,两个不同解,相交,两个相同解,相切,无解,相离,知识点三 弦长公式,。
4、第1课时 椭圆的简单性质,第二章 1.2 椭圆的简单性质,学习目标 1.掌握椭圆的简单性质,并正确地画出它的图形. 2.能根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 椭圆的范围、对称性和顶点,思考 在画椭圆图形时,怎样才能画的更准确些?,答案 在画椭圆时,可先画一个矩形,矩形的顶点为(a,b),(a,b),(a,b),(a,b),梳理 椭圆的简单性质,(c,0),(0,c),a,b,b,a,2a,2b,知识点二 椭圆的离心率,椭圆的焦距与长轴长度的比 称为椭圆的离心率,记作e .因为ac,故椭圆。
5、2.1 抛物线及其标准方程,第二章 2 抛物线,学习目标 1.掌握抛物线的定义及焦点、准线的概念. 2.掌握抛物线的标准方程及其推导过程. 3.明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 抛物线的定义,思考1 平面内,到两定点距离相等的点的轨迹是什么?,答案 连接两定点所得线段的垂直平分线.,思考2 平面内,到一定点和一条定直线(点不在定直线上)距离相等的点的轨迹是直线还是曲线呢?,答案 曲线.,梳理 (1)定义:平面内与一定点F和一条定直线l(l不过F)的 的点。
6、3.1 双曲线及其标准方程,第二章 3 双曲线,学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程及其求法. 3.会利用双曲线的定义和标准方程解决简单的问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 双曲线的定义,思考 若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?,答案 如图,曲线上的点满足条件:|MF1|MF2|常数(小于|F1F2|);如果改变一下笔尖位。
7、1.1 椭圆及其标准方程,第二章 1 椭圆,学习目标 1.了解椭圆的实际背景,了解椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 椭圆的定义,思考 给你两个图钉,一根无弹性的细绳,一张纸板,一支铅笔,如何画出一个椭圆?,答案 在纸板上固定两个图钉,绳子的两端固定在图钉上,绳长大于两图钉间的距离,笔尖贴近绳子,将绳子拉紧,移动笔尖即可画出椭圆.,梳理 (1)定义 平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作 . 这两个定点F1,F2。