第2课时 抛物线简单性质的应用,第二章 2.2 抛物线的简单性质,学习目标 1.进一步认识抛物线的几何特性. 2.学会解决直线与抛物线相关的综合问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与抛物线的位置关系,思考 若直线与抛物线只有一个交点,直线与抛物线一定相切吗?,答案 不
北师大版高中数学选修1-1课件2.2.1 抛物线及其标准方程Tag内容描述:
1、第2课时 抛物线简单性质的应用,第二章 2.2 抛物线的简单性质,学习目标 1.进一步认识抛物线的几何特性. 2.学会解决直线与抛物线相关的综合问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与抛物线的位置关系,思考 若直线与抛物线只有一个交点,直线与抛物线一定相切吗?,答案 不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点.,梳理 (1)直线与抛物线的位置关系与公共点个数.,(2)直线ykxb与抛物线y22px(p0)的交点个数决定于关于x的方程k2x22(kbp)xb20的解的个数.当k0时,若0,则直线与抛物线有 。
2、第1课时 抛物线的简单性质,第二章 2.2 抛物线的简单性质,学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等简单性质. 2.会利用抛物线的性质解决一些简单的抛物线问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 抛物线的简单性质,思考 类比椭圆的简单性质,结合图像,你能说出抛物线y22px(p0)中x的范围、对称性、顶点坐标吗?,答案 范围x0,关于x轴对称,顶点坐标(0,0).,梳理,(0,0),1,2p,知识点二 焦点弦,设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则,思考辨析 判断正误 1.抛物线有一个顶点,一个焦点,一。
3、3.1 双曲线及其标准方程,第二章 3 双曲线,学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程及其求法. 3.会利用双曲线的定义和标准方程解决简单的问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 双曲线的定义,思考 若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?,答案 如图,曲线上的点满足条件:|MF1|MF2|常数(小于|F1F2|);如果改变一下笔尖位。
4、1.1 椭圆及其标准方程,第二章 1 椭圆,学习目标 1.了解椭圆的实际背景,了解椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 椭圆的定义,思考 给你两个图钉,一根无弹性的细绳,一张纸板,一支铅笔,如何画出一个椭圆?,答案 在纸板上固定两个图钉,绳子的两端固定在图钉上,绳长大于两图钉间的距离,笔尖贴近绳子,将绳子拉紧,移动笔尖即可画出椭圆.,梳理 (1)定义 平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作 . 这两个定点F1,F2。
5、第二章 2.4 抛物线,2.4.1 抛物线及其标准方程,学习目标 1.掌握抛物线的定义及焦点、准线的概念. 2.掌握抛物线的标准方程及其推导. 3.明确抛物线标准方程中p的几何意义,并能解决简单的求抛物线标准方程问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 抛物线的定义,思考1,平面内,到两定点距离相等的点的轨迹是什么?,连接两定点所得线段的垂直平分线.,答案,思考2,平面内,到两个确定平行直线l1,l2距离相等的点的轨迹是什么?,一条直线.,答案,思考3,到定点的距离与到定直线的距离相等的点的轨迹是什么?,抛物线.,答案,梳理。
6、2.1 抛物线及其标准方程,第二章 2 抛物线,学习目标 1.掌握抛物线的定义及焦点、准线的概念. 2.掌握抛物线的标准方程及其推导过程. 3.明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 抛物线的定义,思考1 平面内,到两定点距离相等的点的轨迹是什么?,答案 连接两定点所得线段的垂直平分线.,思考2 平面内,到一定点和一条定直线(点不在定直线上)距离相等的点的轨迹是直线还是曲线呢?,答案 曲线.,梳理 (1)定义:平面内与一定点F和一条定直线l(l不过F)的 的点。