欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

北师大版九年级下册数学2.1 二次函数1教案

第二章 二次函数 压轴题过关习题1如图,点 A,B,C 都在抛物线 y=ax22amx+am 2+2m5( a0)上,ABx 轴,ABC=135,且 AB=4(1)填空:抛物线的顶点坐标为 ;(用含 m的代数式表示) ;(2)求ABC 的面积(用含 a的代数式表示) ;(3)若ABC 的面积为 2,

北师大版九年级下册数学2.1 二次函数1教案Tag内容描述:

1、第二章 二次函数 压轴题过关习题1如图,点 A,B,C 都在抛物线 y=ax22amx+am 2+2m5( a0)上,ABx 轴,ABC=135,且 AB=4(1)填空:抛物线的顶点坐标为 ;(用含 m的代数式表示) ;(2)求ABC 的面积(用含 a的代数式表示) ;(3)若ABC 的面积为 2,当 2m5x2m2 时,y 的最大值为 2,求 m的值2抛物线 y=ax2+bx的顶点 M( ,3)关于 x轴的对称点为 B,点 A为抛物线与 x轴的一个交点,点 A关于原点 O的对称点为 A;已知 C为 AB 的中点,P为抛物线上一动点,作 CDx 轴,PEx 轴,垂足分别为 D,E来源:Zxxk.Com(1)求点 A的坐标及抛物线的解。

2、2.2 二次函数的图象与性质二次函数的图象与性质 第第 2 课时课时 二次函数二次函数 y=ax2和和 y=ax2+c 的图象与性质的图象与性质 1能画出二次函数 yax2和 yax2 c(a0)的图象;(重点) 2掌握二次函数 yax2与 yax2 c(a0)图象之间的联系;(重点) 3能灵活运用二次函数 yax2和 y ax2c(a0)的知识解决简单的问题 (难点) 一、情境导入 在同一平面直角坐标系中,画出函数 y 2x2与 y2x22 的图象 观察这两个函数 图象,它们的开口方向、对称轴和顶点坐标 有哪些相同和不同之处?你能由此说出函 数 y2x2与 y2x22 的图象之间的关系 吗?本节就探讨二次函。

3、第第 2 章章 二次函数二次函数 单元测试卷单元测试卷 一选择题一选择题 1下列各式中,y 是关于 x 的二次函数的是( ) Ax2y+x1 Bx2xy5 Cy2x2+2 Dx2+y+20 2抛物线 y1+3x2( ) A开口向上,且有最高点 B开口向上,且有最低点 C开口向下,且有最高点 D开口向下,且有最低点 3二次函数 ymx2+(62m)x+m3 的图象如图所示,则 m 的取值范围是( )。

4、2.5 二次函数与一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第2课时 利用二次函数求方程的近似根,第二章 二次函数,北师大版九年级下册数学教学课件,1.会用二次函数图象求一元二次方程的近似解及一元二次不等式的解集; (重点) 2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点),学习目标,问题:上节课我们学习了一元二次方程ax2+bx+c=0(a0)和二次函数y=ax2+bx+c(a0)之间的关系,那么如何利用二次函数图象直接求出一元二次方程的根呢?,导入新课,回顾与思考,例1:求一元二次方程 的近似根(精确到0.1).,分。

5、2.2 二次函数的图象与性质二次函数的图象与性质 第第 4 课时课时 二次函数二次函数 y=a(x-h)2+k 的图象与性质的图象与性质 1掌握二次函数 yax2与 ya(xh)2 k(a0)图象之间的联系;(重点) 2能灵活运用二次函数 ya(xh)2 k(a0)的知识解决简单的问题(难点) 一、情境导入 一场篮球赛中, 球员甲跳起投篮, 如图, 已知球在 A 处出手时离地面20 9 m,与篮筐中 心 C 的水平距离是 7m,当球运行的水平距 离是 4m时, 达到最大高度 B 处, 高度为 4m, 设篮球运行的路线为抛物线篮筐距地面 3m.问此球能否投中? 二、合作探究 探究点:二次函数 ya(xh)。

6、2.2 二次函数的图象与性质二次函数的图象与性质 第第 5 课时课时 二次函数二次函数 y=ax2+bx+c 的图象与性质的图象与性质 1掌握把 yax2bxc(a0)通过配 方写成 ya(xh)2k(a0)的形式, 并能由 此得到二次函数图象的顶点坐标;(重点) 2.掌握二次函数 yax2bxc(a0) 的性质, 运用函数图象的性质解决问题 (难 点) 一、情境导入 在跳绳时, 绳甩到最高处的形状可近似 地看作抛物线如图,正在甩绳的甲、乙两 名学生拿绳的手间距为 4 米,距地面均为 1 米,学生丙的身高是 1.5 米,距甲拿绳的手 水平距离为 1 米,绳子甩到最高处时,刚好 通过他的头。

7、1.3 三角函数的计算三角函数的计算 1熟练掌握用科学计算器求三角函数 值;(重点) 2初步理解仰角和俯角的概念及应 用(难点) 一、情境导入 如图和图,将一个 RtABC 形状 的楔子从木桩的底端点 P 沿水平方向打入 木桩底下,可以使木桩向上运动如果楔子 斜面的倾斜角为 10, 楔子沿水平方向前进 5cm(如箭头所示)那么木桩上升多少厘 米? 观察图易知, 当楔子沿水平方向前进 5cm,即 BN5 cm 时,木桩上升的距离为 PN. 在 Rt PBN 中,tan10PN BN, PNBNtan105tan10(cm) 那么,tan10等于多少呢? 对于不是 30, 45, 60这些特殊角 的三角函数值,。

8、1.6 利用三角函数测高利用三角函数测高 1经历运用仪器进行实地测量以及撰 写活动报告的过程, 能够对所得到的数据进 行分析;(重点) 2能综合应用直角三角形的边角关系 的知识解决实际问题(难点) 一、情境导入 如图所示, 站在离旗杆 BE 底部 10 米处 的 D 点,目测旗杆的顶部,视线 AB 与水平 线的夹角BAC 为 34, 并已知目高 AD 为 1.5 米 现在若按 1500 的比例将ABC 画 在纸上,并记为ABC,用刻度直尺量出 纸上 BC的长度,便可以算出旗杆的实际高 度你知道计算的方法吗? 实际上, 我们利用图中已知的数据就 可以直接计算旗杆的高度, 。

9、1.5 三角函数的应用三角函数的应用 1通过生活中的实际问题体会锐角三 角函数在解决问题过程中的作用;(重点) 2能够建立数学模型,把实际问题转 化为数学问题(难点) 一、情境导入 为倡导“低碳生活”, 人们常选择自行 车作为代步工具, 图所示的是一辆自行车 的实物图 图是这辆自行车的部分几何示 意图,其中车架档 AC 与 CD 的长分别为 45cm 和 60cm,且它们互相垂直,座杆 CE 的长为 20cm.点 A、C、E 在同一条直线上, 且CAB75. 你能求出车架档 AD 的长吗? 二、合作探究 探究点:三角函数的应用 【类型一】 利用方向角解决问题 某船以。

10、 九年级下册(北师大版)数学单元检测试卷:第 2 章 二次函数一选择题(共 10 小题)1抛物线 y=2x21 与直线 y=x+3 的交点的个数是( )A0 个 B1 个 C2 个 D3 个2对于抛物线 y=2(x+1) 2+3,下列结论:抛物线的开口向下;对称轴为直线 x=1:顶点坐标为(1,3 ) ;x1 时, y 随 x 的增大而减小其中正确结论的个数为( )A1 B2 C3 D43已知二次函数 y=x2x+a(a0) ,当自变量 x 取 m 时,其相应的函数值小于 0,则下列结论正确的是( )Ax 取 m1 时的函数值小于 0Bx 取 m1 时的函数值大于 0Cx 取 m1 时的函数值等于 0Dx 取 m1 时函数值与 0 。

11、 单元提升测试卷:第二 章二次函数一选择题1抛物线 y=3x 24 的开口方向和顶点坐标分别是( )A向下, (0,4) B向下, (0,4)C向上, (0,4) D向上, (0,4)2已知函数 y=2mx2+(14m)x+2m1,下列结论错误的是( )A当 m=0时,y 随 x的增大而增大B当 m= 时,函数图象的顶点坐标是( , )C当 m=1 时,若 x ,则 y随 x的增大而减小D无论 m取何值,函数图象都经过同一个点3设一元二次方程(x2) (x3)=m(m0)的两根分别为,且 ,则二次函数 y=(x2) (x3)的函数值ym 时自变量 x的取值范围是( )Ax3 或 x2 Bx 或 xCx D2x34为了响。

12、2.2 二次函数的图象与性质二次函数的图象与性质 第第 3 课时课时 二次函数二次函数 y=a(x-h)2的图象与性质的图象与性质 1掌握二次函数 yax2与 ya(x h)2(a0)图象之间的联系;(重点) 2能灵活运用二次函数 ya(x h)2(a0)的知识解决简单的问题(难点) 一、情境导入 二次函数 yax2c(a0)的图象可以 由 yax2(a0)的图象平移得到: 当 c0 时,向上平移 c 个单位长度; 当 c0 时,向下平移c 个单位长度 问题:函数 y (x2)2的图象,能否 也可以由函数 y x2平移得到?本节课我 们就一起讨论 二、合作探究 探究点:二次函数 ya(xh)2的图象 与性质 【类型。

13、2.3 确定二次函数的表达式,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.会用待定系数法求二次函数的表达式.(难点) 2.会根据待定系数法解决关于二次函数的相关问题.(重点),导入新课,复习引入,1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?,2.求一次函数表达式的方法是什么?它的一般步骤是什么?,2个,2个,待定系数法,(1)设:(表达式) (2)代:(坐标代入) (3)解:方程(组) (4)还原:(写表达式),讲授新课,典例精析,例1.已知二次函数yax2 c的图象经过。

14、第二章 二次函数2.1 二次函数基础导练1下列 函数中属于二次函数的是( )Ayx(x1) Bxy1Cy 2x22(x 1) 2 D 32xy2在二次函数y3x 2; 中,图象在同一水平线上的开口大小顺224;3xy序 用题号表示应该为( )A B 来源:Zxxk.ComC D 3对于抛物线 yax 2,下列说法中正确的是( )Aa 越大,抛物线开口越大 Ba 越小,抛物线开口越大Ca越大,抛物线开口越大 Da越小,抛物线开口越大4下列说法中错 误的是( )A 在函数 yx 2 中,当 x0 时 y 有最大值 0B在函数 y 2x2 中,当 x0 时 y 随 x 的增大而增大C抛物线 y 2x2,yx 2, 中,抛物线 y2x 2 的开口最小,抛物线 。

15、2.5 二次函数与一元二次方程二次函数与一元二次方程 第第 2 课时课时 利用二次函数求方程的近似根利用二次函数求方程的近似根 1会利用二次函数的图象求一元二次 方程的近似根;(重点) 2进一步体会二次函数与一元二次方 程的关系(难点) 一、情境导入 你能根据函数 yx22x5 的图象(如 图),求出方程 x2 2x50 的近似根吗 (精确到 0.1)? 由图象知, 抛物线与x轴有两个公共点, 它们分别位于x轴上1和2、 4和3之间, 所以一元二次方程 x2 2x50 有两个 根, 它们分别介于 1 和 2、 4 和3 之间 这 两个根分别是 1.5 和3.5 吗? 二、合作探究 探究点。

16、2.5 二次函数与一元二次方程二次函数与一元二次方程 第第 1 课时课时 二次函数与一元二次方程二次函数与一元二次方程 1经历探索二次函数与一元二次方程 的关系的过程,体会方程与函数之间的联 系;(重点) 2理解二次函数与 x 轴交点的个数与 一元二次方程的根的关系, 理解何时方程有 两个不等的实根、 两个相等的实根和没有实 根;(重点) 3通过观察二次函数与 x 轴交点的个 数,讨论一元二次方程的根的情况,进一步 培养学生的数形结合思想(难点) 一、情境导入 一个涵洞成抛物线形, 它的截面如图所 示现测得,当水面宽 AB1.6m 时,涵洞 。

17、北师大九年级数学下册 第二章 二次函数 2.1 二次函数 同步训练学校:_ 班级:_ 姓名:_ 考号:_一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计 30 分 , ) 1. 下列函数中,能表示 是 的二次函数是( ) A.=12B.=22C.2=21 D.=(31)322. 是二次函数,则 的值为( ) =2+2+2 A. ,0 2 B. ,0 2 C.0 D. 23. 如果函数 是二次函数,那么 的值一定是( ) =(3)23+2 A.0 B.3 C. ,0 3 D. ,1 24. 下列函数关系中,可以看做二次函数 模型的是( ) =2+A.在一定距离内,汽车行驶的速度与行驶的时间的关系B.我国人中自然增长率为 ,这样我国总人。

18、2.3 确定二次函数的表达式确定二次函数的表达式 1通过对用待定系数法求二次函数表 达式的探究,掌握求表达式的方法;(重点) 2 能灵活根据条件恰当地选择表达式, 体会二次函数表达式之间的转化(难点) 一、情境导入 一副眼镜镜片的下半部分轮廓对应的 两条抛物线关于 y 轴对称, 如图 ABx 轴, AB4cm, 最低点 C 在 x 轴上, 高 CH1cm, BD2cm.你能确定右轮廓线 DFE 所在抛物 线的函数解析式吗? 二、合作探究 探究点: 用待定系数法确定二次函数解 析式 【类型一】 已知顶点坐标确定二次函 数解析式 已知抛物线的顶点坐标为 M(1, 2),且。

19、2.1 二次函数,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,北师大版九年级下册数学教学课件,1.理解掌握二次函数的概念和一般形式.(重点) 2.会利用二次函数的概念解决问题. 3.会列二次函数表达式解决实际问题.(难点),导入新课,情景引入,里约奥运会上,哪位奥运健儿给你留下了深刻的印象?你能猜出下面表情包是谁吗?,你们是根据哪些特征猜出的呢?,下面来看傅园慧在里约奥运会赛后的采访视频,注意前方高能表情包.,通过表情包来辨别人物,最重要的是根据个人的特征,那么数学的特征是什么呢?,“数学根本上是玩概念的,不是。

20、2.1 二次函数二次函数 1理解、掌握二次函数的概念和一般 形式;(重点) 2会利用二次函数的概念解决问题; (重点) 3列二次函数表达式解决实际问 题(难点) 一、情境导入 已知长方形窗户的周长为 6m,窗户面 积为 y m2,窗户宽为 x m,你能写出 y 与 x 之间的函数关系式吗?它是什么函数呢? 二、合作探究 探究点一:二次函数的概念 【类型一】 二次函数的识别 下列函数中是二次函数的有 ( ) yx1 x;y3(x1) 22;y(x 3)22x2;y 1 x2x. A4 个 B3 个 C2 个 D1 个 解析:yx1 x,y 1 x2x 的右边 不是整式,故不是二次函数;y3(x 1)22,符合二次函数。

【北师大版九年级下册数学2.1 二次函数1教案】相关PPT文档
北师大版九年级下册数学《2.5 第2课时利用二次函数求方程的近似根》课件
北师大版九年级下册数学《2.3 确定二次函数的表达式》课件
北师大版九年级下册数学《2.1 二次函数》课件
【北师大版九年级下册数学2.1 二次函数1教案】相关DOC文档
北师大版九年级数学下册第二章《二次函数》压轴题过关习题(含答案)
2020-2021学年北师大版九年级下册数学《第2章 二次函数》单元测试卷(含答案)
北师大版九年级下册数学《1.3 三角函数的计算1》教案
北师大版九年级下册数学《1.6 利用三角函数测高1》教案
北师大版九年级下册数学《1.5 三角函数的应用1》教案
北师大版九年级下册数学《第2章二次函数》单元检测试卷有答案
北师大版九年级下册数学第二章《二次函数》单元提升测试卷有答案
2018秋北师大版九年级数学下册《2.1二次函数》课时训练题(含答案)
北师大版九年级下册数学《2.5 第1课时 二次函数与一元二次方程1》教案
北师大九年级数学下册《2.1二次函数》同步训练(有答案)
北师大版九年级下册数学《2.3 确定二次函数的表达式1》教案
北师大版九年级下册数学《2.1 二次函数1》教案
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开