,要点梳理,考点讲练,当堂练习,课堂小结,小结与复习,第五章 生活中的轴对称,1.轴对称图形:把一个图形沿着一条直线折叠,如 果直线两旁的部分能够完全重合,那么这个图形 就叫作轴对称图形.这条直线叫作对称轴. 2.轴对称:把一个图形沿一条直线折叠,如果它能 与另一个图形完全重合,那么这两个图关于这条
北师大版七年级数学下册6.3.2与摸球相关的概率课件Tag内容描述:
1、,要点梳理,考点讲练,当堂练习,课堂小结,小结与复习,第五章 生活中的轴对称,1.轴对称图形:把一个图形沿着一条直线折叠,如 果直线两旁的部分能够完全重合,那么这个图形 就叫作轴对称图形.这条直线叫作对称轴. 2.轴对称:把一个图形沿一条直线折叠,如果它能 与另一个图形完全重合,那么这两个图关于这条 直线成轴对称.这条直线叫作对称轴.,要点梳理,一.轴对称图形与轴对称,3.轴对称图形和轴对称的区别与联系,轴对称图形,轴对称,区别,联系,图形,(1)轴对称图形是指( ) 具 有特殊形状的图形, 只对( ) 图形而言; (2)对称轴( ) 只有一条,(1)轴。
2、2.3 平行线的性质 第2课时 平行线性质与判定的综合运用,第二章 相交线与平行线,导入新课,讲授新课,当堂练习,课堂小结,1.进一步掌握平行线的性质,运用两条直线是平行判断角相等或互补;(重点) 2.能够根据平行线的性质与判定进行简单的推理与计算.,学习目标,同位角,内错角,同旁内角,1=2,3=2,2+4=180,a,b,c,1,4,1.平行线的判定,导入新课,回顾与思考,方法4:如图1,若ab,bc,则ac. ( )方法5:如图2,若ab,ac,则bc. ( ),平行于同一条直线的两条直线平行,垂直于同一条直线的两条直线平行,2.平行线的其它判定方法,图形,已知,结果,依据,。
3、3 等可能事件的概率,导入新课,讲授新课,当堂练习,课堂小结,第六章 概率初步,第1课时 简单概率的计算,北师大版七年级数学下教学课件,学习目标,1.通过摸球游戏,帮助学生了解计算等可能事件 的概率的方法,体会概率的意义;(重点) 2.灵活应用概率的计算方法解决各种类型的实际 问题.(难点),视频中的游戏公平吗?为什么?,视频引入,导入新课,讲授新课,互动探究,试验1:抛掷一个质地均匀的骰子,(1)它落地时向上的点数有几种可能的结果?,(2)各点数出现的可能性会相等吗?,(3)试猜想:各点数出现的可能性大小是多少?,6种,相等,试验2: 掷。
4、3 等可能事件的概率,导入新课,讲授新课,当堂练习,课堂小结,第六章 概率初步,第1课时 简单概率的计算,学习目标,1.通过摸球游戏,帮助学生了解计算等可能事件的概率的方法,体会概率的意义;(重点) 2.灵活应用概率的计算方法解决各种类型的实际问题.(难点),视频中的游戏公平吗?为什么?,视频引入,导入新课,讲授新课,互动探究,试验1:抛掷一个质地均匀的骰子,(1)它落地时向上的点数有几种可能的结果?,(2)各点数出现的可能性会相等吗?,(3)试猜想:各点数出现的可能性大小是多少?,6种,相等,试验2: 掷一枚硬币,落地后:,(1)会出现几种。
5、3 等可能事件的概率,导入新课,讲授新课,当堂练习,课堂小结,第六章 概率初步,第4课时 与面积相关的概率(2)转盘游戏,北师大版七年级数学下教学课件,导入新课,复习引入,概率的计算方法,该事件所占区域的面积 所求事件的概率= 总面积,讲授新课,如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在蓝色区域和红色区域的概率分别是多少?,转动如图所示的转盘,当转盘停止时,指针落在红色区域和蓝色区域的概率分别是多少?,想一想,例1 某路口南北方向红绿灯的设置时间为:红灯20秒、绿灯60秒、黄灯3秒.小明的爸爸随机地由南往北开。
6、3 等可能事件的概率,导入新课,讲授新课,当堂练习,课堂小结,第六章 概率初步,第2课时 与摸球相关的概率,1.通过小组合作、交流、试验,初步理解游戏的公平性,会设计简单的公平的游戏. 2.灵活应用概率的计算方法解决各种类型的实际问题.,学习目标,一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?,情境导入,导入新课,讲授新课,议一议,(1)一个袋中装有2个红球和3个白球,每个球除颜色外都相同,任意摸出一个球,摸到红球的概率是多少?,小明说:。