(精品资料)(精品资料)20202020 年中考数学压轴题突破年中考数学压轴题突破专题七专题七 几何几何 图形动点运动问题图形动点运动问题 类型一 【探究动点运动过程中线段之间的数量关系】 【典例指引 1】在 ABC 中,ACB45 ,点 D 为射线 BC 上一动点(与点 B、C 不重合) ,连接
备战2020年中考几何压轴题分类Tag内容描述:
1、(精品资料)(精品资料)20202020 年中考数学压轴题突破年中考数学压轴题突破专题七专题七 几何几何 图形动点运动问题图形动点运动问题 类型一 【探究动点运动过程中线段之间的数量关系】 【典例指引 1】在 ABC 中,ACB45 ,点 D 为射线 BC 上一动点(与点 B、C 不重合) ,连接 AD,以 AD 为一边在 AD 右侧作正方形 ADEF (1)如果 ABAC,如图 1,且点 D 在线段 BC 上运动,判断BAD CAF(填“”或“”) ,并证 明:CFBD (2)如果 ABAC,且点 D 在线段 BC 的延长线上运动,请在图 2 中画出相应的示意图,此时(1)中的结 论是否成立?。
2、 决胜2021中考数学压轴题全揭秘精品 专题14 几何变换问题 【考点1】平移变换问题 【例1】(2020四川泸州中考真题)在平面直角坐标系中,将点向右平移4个单位长度,得到的对应点的坐标为( ) ABCD 【答案】C 【分析】 根据横坐标,右移加,左移减可得点A(-2,3)向右平移4个单位长度后得到的对应点A的坐标为(-2+4,3) 【详解】 解:点A(-2,3)向右平移4个单位长度后得到的。
3、三轮复习:几何综合+函数综合一选择题1如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()ABCD2如图所示,点P(3a,a)是反比例函数y(k0)与O的一个交点,图中阴影部分的面积为10,则反比例函数的解析式为()AyByCyDy3如图,ABC与DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A:1B:1C5:3D不确定4如图,已知:MON30,点A1、A2、A3在射线ON上,点B1、B2、B3在射线OM上,A1B1A2、A2B2A3、A3B3A4均为等边三角形,若OA11,则A6B6A7的边长为()A6B12C32D645如图,已知l1l2l3,相邻两。
4、(精品资料)(精品资料)20202020 年中考数学压轴题突破年中考数学压轴题突破专题四专题四 几何最值的存在性几何最值的存在性 问题问题 类型一 【确定线段(或线段的和,差)的最值或确定点的坐标】 【典例指引 1】 (2018 天津中考模拟)如图, 在平面直角坐标系中, 长方形 OABC 的顶点 A、C 分别在 x 轴、 y 轴的正半轴上点 B 的坐标为(8,4) ,将该长方形沿 OB 翻折,点 A 的对应点为点 D,OD 与 BC 交于点 E (I)证明:EO=EB; ()点 P 是直线 OB 上的任意一点,且 OPC 是等腰三角形,求满足条件的点 P 的坐标; ()点 M 是 OB。
5、2019年中考数学真题分类训练专题二十:几何探究型问题1(2019重庆A卷)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EMAE,垂足为E,交CD于点M,AFBC,垂足为F,BHAE,垂足为H,交AF于点N,点P是AD上一点,连接CP(1)若DP=2AP=4,CP,CD=5,求ACD的面积(2)若AE=BN,AN=CE,求证:ADCM+2CE解:(1)作CGAD于G,如图1所示:设PG=x,则DG=4-x,在RtPGC中,GC2=CP2-PG2=17-x2,在RtDGC中,GC2=CD2-GD2=52-(4-x)2=9+8x-x2,17-x2=9+8x-x2,解得:x=1,即PG=1,GC=4,DP=2AP=4,AD=6,SACDADCG64=12(2)证明:连接NE,如图2所示:AHAE。
6、2019年中考数学真题分类训练专题九:几何图形初步一、选择题1(2019长沙)如图,平行线AB,CD被直线AE所截,1=80,则2的度数是A80B90C100D110【答案】C2(2019凉山州)如图,BDEF,AE与BD交于点C,B=30,A=75,则E的度数为A135B125C115D105【答案】D3(2019泰安)如图,直线l1l2,1=30,则2+3=A150B180C210D240【答案】C4(2019随州)如图,直线lll2,直角三角板的直角顶点C在直线l1上,一锐角顶点B在直线l2上,若1=35,则2的度数是A65B55C45D35【答案】B5(2019淄博。
7、20212021 中考数学第三轮冲刺复习:二次函数中考数学第三轮冲刺复习:二次函数 压轴题综合训练压轴题综合训练 1、如图,在平面直角坐标系中,二次函数 y=(x-a)(x-3)的图像与 x 轴交于点 A、B(点 A 在点 B 的左侧),与 y 轴交于点 D,过其顶点 C 作直线 CPx 轴,垂足为点 P,连接 AD、BC. (1)求点 A、B、D 的坐标; (2)若AOD 与BPC 相似,求。
8、(精品资料)(精品资料)20202020 年中考数学压轴题突破年中考数学压轴题突破专题九专题九 动态动态 几何定值问题几何定值问题 类型一 【线段及线段的和差为定值】 【典例指引1】 已知: ABC是等腰直角三角形, BAC90 , 将 ABC绕点C顺时针方向旋转得到 ABC, 记旋转角为 ,当 90 180 时,作 ADAC,垂足为 D,AD 与 BC 交于点 E (1)如图 1,当CAD15 时,作AEC 的平分线 EF 交 BC 于点 F 写出旋转角 的度数; 求证:EA+ECEF; (2)如图 2,在(1)的条件下,设 P 是直线 AD 上的一个动点,连接 PA,PF,若 AB 2,求线段 PA+PF 的最小值。
9、几何压轴题型类型一 动点探究型在菱形ABCD中,ABC60,点P是射线BD上一动点,以AP为边向右侧作等边APE,点E的位置随着点P的位置变化而变化(1)如图,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是_,CE与AD的位置关系是_;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图,图中的一种情况予以证明或说理);(3)如图,当点P在线段BD的延长线上时,连接BE,若AB2,BE2,求四边形ADPE的面积【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明AB。
10、 1 专题专题 6:直角三角形性质的应用直角三角形性质的应用 【典例引领】【典例引领】 例:如图,在 RtABC 中,AC=BC,ACB=90 ,点 D,E 分别在 AC,BC 上,且 CD=CE (1)如图 1,求证:CAE=CBD; (2)如图 2,F 是 BD 的中点,求证:AECF; (3)如图 3,F,G 分别是 BD,AE 的中点,若 AC=2 ,CE=1,求CGF 的面积 【强化训练】【强化训练】 1在正方形 ABCD 中,E 是边 CD 上一点(点 E 不与点 C、D 重合),连结 BE (感知)如图,过点 A 作 AFBE 交 BC 于点 F易证ABFBCE(不需要证明) (探究)如图,取 BE 的中点 M,过点 M 作 FGBE。
11、 1 专题专题 8:相似三角形性质和判定的应用相似三角形性质和判定的应用 【典例引领】【典例引领】 例:如图,在矩形 ABCD 中,AB=3,BC=5,E 是 AD 上的一个动点 (1)如图 1,连接 BD,O 是对角线 BD 的中点,连接 OE当 OE=DE 时,求 AE 的长; (2)如图 2,连接 BE,EC,过点 E 作 EFEC 交 AB 于点 F,连接 CF,与 BE 交于点 G当 BE 平分 ABC 时,求 BG 的长; (3)如图 3,连接 EC,点 H 在 CD 上,将矩形 ABCD 沿直线 EH 折叠,折叠后点 D 落在 EC 上的点 D处, 过点 D作 DNAD 于点 N,与 EH 交于点 M,且 AE=1 求 的值; 连接 BE。
12、 1 专题专题 1:构造等边三角形:构造等边三角形 【典例引领】【典例引领】 例:例:在菱形 ABCD 中,ABC=60,E 是对角线 AC 上一点,F 是线段 BC 延长线上一点,且 CF=AE,连 接 BE、EF。 (1)若 E 是线段 AC 的中点,如图 1,易证:BE=EF(不需证明); (2)若 E 是线段 AC 或 AC 延长线上的任意一点,其它条件不变,如图 2、图 3,线段 BE、EF 有怎样的数 量关系,直接写出你的猜想;并选择一种情况给予证明。 【答案】(1)证明见解析;(2)证明见解析 【分析】 首先构造全等三角形, 过点 E 作 EGBC, 可得到AGE 是等边三角形, 。
13、 1 专题专题 1:构造等边三角形:构造等边三角形 【典例引领】【典例引领】 例:例:在菱形 ABCD 中,ABC=60,E 是对角线 AC 上一点,F 是线段 BC 延长线上一点,且 CF=AE,连 接 BE、EF。 (1)若 E 是线段 AC 的中点,如图 1,易证:BE=EF(不需证明); (2)若 E 是线段 AC 或 AC 延长线上的任意一点,其它条件不变,如图 2、图 3,线段 BE、EF 有怎样的数 量关系,直接写出你的猜想;并选择一种情况给予证明。 【强化训练】【强化训练】 1如图,ABC 中,AB=BC,BDAC 于点 D,FAC= ABC,且FAC 在 AC 下方点 P,Q 分别是 射线 BD,射线。
14、 1 专题专题 5:角平分线性质的应用:角平分线性质的应用 【典例引领】【典例引领】 例: 在等腰ABC 中,B=90 ,AM 是ABC 的角平分线,过点 M 作 MNAC 于点 N,EMF=135 将 EMF 绕点 M 旋转,使EMF 的 两边交直线 AB 于点 E,交直线 AC 于点 F,请解答下列问题: (1)当EMF 绕点 M 旋转到如图的位置时,求证:BE+CF=BM; (2)当EMF 绕点 M 旋转到如图,图的位置时,请分别写出线段 BE,CF,BM 之间的数量关系,不 需要证明; (3)在(1)和(2)的条件下,tanBEM=3,AN=2+1,则 BM= ,CF= 【答案】【答案】 (1)证明见解析(2)见解析。
15、 1 专题专题 9:由动点引出的几种面积问题由动点引出的几种面积问题 动点题是近年来中考的一个热点问题也是难点问题,而因动点产生的面积问题是这类题目考查的重点. 解这类题目要掌握几个基本图形及思路,而后“以静制动”、“转化求解”. 即把动态问题变为静态问题,变为 我们所熟知的模型来解。 基本模型一 利用“铅垂高、水平宽”求三角形面积. a a h h 面积公式:S= 1 2 ah 基本模型二 C A B D 其中:: ACDBCD SSAD BD : ,: ACDBCA SSAD BA : 基本模型三 a h C A OB 1 2 AOBACBAOBC SSSa hOA 四边形 类型一、一次函数由动点问题引。
16、 1 专题专题 10:中考折叠类题目中的动点问题:中考折叠类题目中的动点问题 折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形 按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似 三角形性质、三角函数等知识进行解答。此类问题立意新颖,充满着变化,要解决此类问题,除了能根据 轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。 类型一、求折叠中动点运动距离或线段长度的最值 例 1. 动手操作:在矩形纸片 ABCD 中。
17、 1 专题专题 10:中考折叠类题目中的动点问题:中考折叠类题目中的动点问题 折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形 按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似 三角形性质、三角函数等知识进行解答。此类问题立意新颖,充满着变化,要解决此类问题,除了能根据 轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。 类型一、求折叠中动点运动距离或线段长度的最值 例 1. 动手操作:在矩形纸片 ABCD 中。
18、 1 专题专题 2:倍长中线法倍长中线法 【典例引领】【典例引领】 例题:(2014 黑龙江龙东地区)已知 ABC 中,M 为 BC 的中点,直线 m 绕点 A 旋转,过 B、M、C 分别 作 BDm 于 E,CFm 于 F。 (1)当直线 m 经过 B 点时,如图 1,易证 EM= CF。(不需证明) (2)当直线 m 不经过 B 点,旋转到如图 2、图 3 的位置时,线段 BD、ME、CF 之间有怎样的数量关系? 请直接写出你的猜想,并选择一种情况加以证明。 【强化训练】【强化训练】 1、 (2017 黑龙江龙东地区)已知:AOB 和 COD 均为等腰直角三角形,AOB=COD=90 ,连接 AD, BC,点 H。
19、 1 专题专题 7:旋转的应用旋转的应用 【典例引领】【典例引领】 例题:在ABC 和ADE 中,BA=BC,DA=DE,且ABC=ADE= ,点 E 在ABC 的内部,连接 EC, EB 和 BD,并且ACE+ABE=90 . (1)如图 1,当 =60 时,线段 BD 与 CE 的数量关系为 ,线段 EA,EB,EC 的数量关系 为 ; (2)如图 2 当 =90 时,请写出线段 EA,EB,EC 的数量关系,并说明理由; (3)在(2)的条件下,当点 E 在线段 CD 上时,若 BC= ,请直接写出BDE 的面积. 【强化训练】【强化训练】 1请认真阅读下面的数学小探究系列,完成所提出的问题: 2 探究 1:如图 1,在等腰。
20、 1 专题专题 4:折叠问题折叠问题 【典例引领】【典例引领】 例:如图,四边形 ABCD 是正方形,点 E 在直线 BC 上,连接 AE将ABE 沿 AE 所在直线折叠,点 B 的 对应点是点 B,连接 AB并延长交直线 DC 于点 F (1)当点 F 与点 C 重合时如图(1),易证:DF+BE=AF(不需证明); (2)(2)当点 F 在 DC 的延长线上时如图(2),当点 F 在 CD 的延长线上时如图(3),线段 DF、BE、 AF 有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明 【强化训练】【强化训练】 1、数学活动:在综合与实践活动课上,老师让同学们以“三角形。