1 专题专题 01 有理数的运算有理数的运算 1有理数:整数和分数统称有理数 正整数、0、负整数统称为整数(0 和正整数统称为自然数) 正分数和负分数统称为分数 理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有 限小数和无限循环小数都可化成分数,都是有理数。
备战2020中考数学复习点拨34讲Tag内容描述:
1、 1 专题专题 01 有理数的运算有理数的运算 1有理数:整数和分数统称有理数 正整数、0、负整数统称为整数(0 和正整数统称为自然数) 正分数和负分数统称为分数 理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有 限小数和无限循环小数都可化成分数,都是有理数。 2相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0; (。
2、 1 专题专题 02 整式的运算整式的运算 1同底数幂的乘法法则:同底数幂的乘法法则: nmnm aaa (nm,都是正整数) 同底数幂相乘,底数不变,指数相加。 2幂的乘方法则:幂的乘方法则: mnnm aa)((nm,都是正整数) 幂的乘方,底数不变,指数相乘。 幂的乘方法则可以逆用:即 mnnmmn aaa)()( 3积的乘方法则:积的乘方法则: nnn baab)((n是正整数) 。 。
3、 1 专题专题 03 分式的运算分式的运算 1.分式:形如 ,A、B 是整式,B 中含有未知数且 B 不等于 0 的整式叫做分式(fraction)。其中 A 叫做分式 的分子,B 叫做分式的分母。分式有意义的条件是分母不等于 0 2.约分:把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分。 3.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。 分式的基本性质:。
4、 1 专题专题 05 因式分解因式分解 1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 2.分解因式的一般方法: (1)提公共因式法. (2)运用公式法. 平方差公式: 22 ababab 完全平方公式: 2 22 2aabbab (3)十字相乘法。利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式 2 xbxc,若存在。
5、 1 专题专题 04 二次根式的运算二次根式的运算 1二次根式:形如式子a(a0)叫做二次根式。 (或是说,表示非负数的算术平方根的式子,叫做二 次根式) 。 2二次根式有意义的条件:被开方数0 3二次根式的性质: (1)是非负数; (2) (a) 2=a (a0) ; (3) aa2 (4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即 = (a0,b0) 。 (5)非负数。
6、 1 专题专题 06 一元一次方程及其应用一元一次方程及其应用 知识点知识点 1:一元一次方程的概念:一元一次方程的概念 1.一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中 x 是未知数,a,b 是已知数,且 a0)。 要点诠释:一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是 1 次; (3)整式方程 注意:方程要化为最简形式,且一次项系数不能为。
7、 1 专题专题 0707 二元一次方程组及其应用二元一次方程组及其应用 1二元一次方程:含有两个未知数,并且未知数的指数都是 1 的方程整式方程叫做二元一次。方程一般形 式是 ax+by=c(a0,b0)。 2二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。 3二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。 4二元一次方程组的解。
8、 1 专题专题 08 分式方程及其应用分式方程及其应用 1分式方程的定义:分母中含有未知数的方程叫做分式方程. 2解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。 (1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); (2)按解整式方程的步骤求出未知数的值; (3)验根:将所得的根代入最简公分母,若等于零,就是增根,原分式方程无解;若不等于零,就是原方。
9、 1 专题专题 09 一元二次方程及其应用一元二次方程及其应用 1 定义: 等号两边都是整式, 只含有一个未知数, 并且未知数的最高次数是 2 的方程, 叫做一元二次方程。 2.一元二次方程的一般形式:ax2+bx+c=0(a0)。其中 ax2 是二次项,a 是二次项系数;bx 是一次项,b 是一 次项系数;c 是常数项。 3. 一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次。
10、 1 专题专题 1010 一元一次不等式(组)及其应用一元一次不等式(组)及其应用 1用不等号“”“”“ ”“”表示不相等关系的式子叫做不等式。 2不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 4一元一次不等式: 不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是 1,像这样的不等式,叫 做一元一。
11、 1 专题专题 11 一次函数一次函数 1一次函数的定义 一般地,形如 ykxb (k,b是常数,且 0k )的函数,叫做一次函数,其中 x 是自变量。 2一次函数的图像:是不经过原点的一条直线。 3一次函数的性质: (1)当 k0 时,图象主要经过第一、三象限;此时,y 随 x 的增大而增大; (2)当 k0 时,直线交 y 轴于正半轴; (4)当 b0 时,直线 y=kx 经过三、一象限。
12、 1 专题专题 12 12 二次函数二次函数 1二次函数的概念:一般地,自变量 x 和因变量 y 之间存在如下关系: y=ax2+bx+c(a0,a、b、 c 为常数), 则称 y 为 x 的二次函数。抛物线)0,( 2 acbacbxaxy是常数,叫做二次函数的一般式。 2.二次函数 y=ax 2 +bx+c(a0)的图像与性质 (1)对称轴: 2 b x a (2)顶点坐标:。
13、 1 专题专题 13 13 反比例函数反比例函数 1反比例函数:形如 y x k (k 为常数,k0)的函数称为反比例函数。其他形式 xy=k、 1 kxy。 2图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对 称轴:直线 y=x 和 y=-x。对称中心是:原点。它的图像与 x 轴、y 轴都没有交点,即双曲线的两个分支无 限接近坐标轴,但永远达不到。
14、 1 专题专题 15 相交线与平行线相交线与平行线 一、相交线一、相交线 1邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。 邻补角的性质:邻补角互补。 2对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。 对顶角的性质:对顶角相等。 3垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 4垂线的性质: 性质 1:。
15、 1 专题专题 14 函数的综合问题函数的综合问题 1.一次函数与二次函数的综合。 2.一次函数与反比例函数的综合。 3.二次函数与反比例函数的综合。 4.一次函数、二次函数和反比例函数的综合。 【例题【例题 1】(2019 黑龙江绥化黑龙江绥化)一次函数 y1x+6 与反比例函数 y2 8 x (x0)的图象如图所示.当 y1y2时,自 变量 x 的取值范围是_. 第 18。
16、 1 专题专题 16 16 全等三角形判定和性质问题全等三角形判定和性质问题 1全等三角形:能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。 2全等三角形的表示 全等用符号“”表示,读作“全等于” 。如ABCDEF,读作“三角形 ABC 全等于三角形 DEF” 。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。 3全等三角形的性质: 全等三角形的。
17、 1 专题专题 17 等腰、等边三角形问题等腰、等边三角形问题 一、等腰三角形 1. 定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶 角,底边和腰的夹角叫底角. 2.等腰三角形的性质 性质 1:等腰三角形的两个底角相等(简称“等边对等角” ) 性质 2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一” ) 3.等腰三角形。
18、 1 专题专题 18 解直角三角形问题解直角三角形问题 一、勾股定理一、勾股定理 1勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a 2b2=c2。 2勾股定理逆定理:如果三角形三边长 a,b,c 满足 a 2b2=c2。 ,那么这个三角形是直角三角形。 3.定理:经过证明被确认正确的命题叫做定理。 4.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫。
19、 1 专题专题 19 平行四边形平行四边形 1平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“ABCD”表示, 如平行四边形 ABCD 记作“ABCD” ,读作“平行四边形 ABCD” 。 2平行四边形的性质: (1)平行四边形的对边平行且相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分。 3平行四边形的判定: (1)两组对边分别平行的四边形是。
20、 1 专题专题 20 矩形矩形 1矩形的定义:有一个角是直角的平行四边形叫做矩形。 2矩形的性质: (1)矩形的四个角都是直角; (2)矩形的对角线平分且相等。 3矩形判定定理: (1)有一个角是直角的平行四边形是矩形; (2)对角线相等的平行四边形是矩形; (3)有三个角是直角的四边形是矩形。 4矩形的面积:S矩形=长宽=ab 【例题【例题 1】(】(2019 广西桂林)广西桂林)将矩。