专题专题 01 集合与常用逻辑用语集合与常用逻辑用语 1(2020 届安徽省合肥市高三第二次质检)若集合1,3,5,7, |28 x ABx ,则AB ( ) A1 B1,3 C5,7 D3,5,7 【答案】C 【解析】 集合 A1,3,5,7, Bx|2x8x|x3, AB5,7 故选 C。 2
备战2021高考 专题11 算法教师版含解析Tag内容描述:
1、 专题专题 01 集合与常用逻辑用语集合与常用逻辑用语 1(2020 届安徽省合肥市高三第二次质检)若集合1,3,5,7, |28 x ABx ,则AB ( ) A1 B1,3 C5,7 D3,5,7 【答案】C 【解析】 集合 A1,3,5,7, Bx|2x8x|x3, AB5,7 故选 C。 2(2020 届甘肃省高三第一次高考诊断)已知1 1Axx ,0Bx x,则AB ( ) A1,0 B。
2、 专题专题 20 不等式选讲不等式选讲 1(2020 届湖南省怀化市高三第一次模拟)已知函数( ) |3|f xxax. (1)若3a,且不等式 ( )5f x 的解集为 37 | 22 xx ,求a的值; (2)如果对任意xR, ( )4f x ,求a的取值范围. 【答案】(1) 1a;(2) 7a或1a 【解析】 (1)若3a,则 23,3 ( )33,3 23, xax f xx。
3、专题专题 16 概率与统计综合概率与统计综合 1(2020 届湖南省怀化市高三第一次模拟)为了解某地中小学生的近视形成原因,教育部门委托医疗机构对 该地所有中小学生的视力做了一次普查现该地中小学生人数和普查得到的近视情况分别如图 1 和图 2 所 示 (1)求该地中小学生的平均近视率(保留两位有效数字); (2)为调查中学生用眼卫生习惯,该地用分层抽样的方法从所有初中生和高中生中确定 5 人进。
4、专题专题 13 函数与导数综合函数与导数综合 1(2020 届湖南省怀化市高三第一次模拟)已知函数 2 ( ) x f xeax,其中常数aR (1)当 (0,)x时,不等式( )0f x 恒成立,求实数a的取值范围; (2)若1a ,且 0,)x时,求证: 2 ( )414f xxx 【答案】(1) 2 4 e a ;(2)证明见解析 【解析】 (1)( )0f x 在0 x恒成立 2 x e 。
5、 专题专题 02 函数性质及其应用函数性质及其应用 1(2020 届安徽省合肥市高三第二次质检)若函数 4 ( )( )2F xf xx是奇函数, 1 ( )( ) 2 x G xf x为偶 函数,则( 1)f ( ) A 5 2 B 5 4 C 5 4 D 5 2 【答案】C 【解析】 函数 F(x)f(x)2x4是奇函数, F(1)+F(1)0,即 f(1)2+f(1)20,则 f(1)。
6、专题专题 17 立体几何综合立体几何综合 1(2020 届湖南省怀化市高三第一次模拟)已知四棱锥PABCD中,PA 平面ABCD,底面ABCD是 菱形,120BAD,点E,F分别为BC和PA的中点 (1)求证:直线/BF平面PED ; (2)求证:平面BCF 平面PAE 【答案】(1)证明见解析;(2)证明见解析 【解析】 (1)取PD的中点M,连FM,ME , E,F分别为BC,PA的中。
7、专题专题 05 平面解析几何平面解析几何 1(2020 届安徽省皖南八校高三第三次联考)已知双曲线 22 22 :1(0,0) xy Cab ab 的渐近线方程为 30 xy,则双曲线C的离心率为( ) A 2 3 3 B 3 C2 2 D 2 【答案】A 【解析】 由题知 1 3 b a , 又 222 abc, 解得 2 3 3 c e a . 故选 A。 2(2020 届甘肃省高三第一次高考。
8、专题专题 18 解析几何综合解析几何综合 1(2020 届湖南省怀化市高三第一次模拟)若抛物线 2 :2(0)C ypx p的焦点为F,O是坐标原点,M 为抛物线上的一点,向量FM与x轴正方向的夹角为 60 ,且OFM的面积为 3. (1)求抛物线C的方程; (2)若抛物线C的准线与x轴交于点A,点N在抛物线C上,求当 | | NA NF 取得最大值时,直线AN的方程. 【答案】(1) 2 4。
9、专题专题 09 不等式不等式 1(2020 届安徽省合肥市高三第二次质检)若实数x,y满足约束条件 240 40 3230 xy xy xy ,则2zxy的最 小值是( ) A5 B4 C7 D16 【答案】B 【解析】 作出可行域,如图射线BA,线段BC,射线CD围成的阴影部分(含边界),作直线:20lxy,向上平 移直线l时2zxy减小,当l过点 (0,4)B 时,2zxy取得最小值。
10、专题专题 10 概率与统计概率与统计 1 (2020 届安徽省合肥市高三第二次质检)为了实施“科技下乡, 精准脱贫”战略, 某县科技特派员带着, ,A B C 三个农业扶贫项目进驻某村,对仅有的四个贫困户进行产业帮扶.经过前期走访得知,这四个贫困户甲、乙、 丙、丁选择, ,A B C三个项目的意向如下: 扶贫项目 A B C 贫困户 甲、乙、丙、丁 甲、乙、丙 丙、丁 若每个贫困户只能从自己已登记。
11、专题专题 04 立体几何立体几何 1(2020 届安徽省合肥市高三第二次质检)某几何体是由一个半球挖去一个圆柱形成的,其三视图如图所 示已知半球的半径为6,则当此几何体体积最小时,则当此几何体体积最小时,它的表面积等于( ) A24 B18 3 3 C21 D 184 2 【答案】D 【解析】设圆柱高为x(06)x,则圆柱底面半径为 2 6rx , 圆柱体积为 223 (6)(6)Vr xxxx。
12、专题专题 07 平面向量平面向量 1(2020 届安徽省合肥市高三第二次质检)在平行四边形ABCD中,若,DEEC AE交BD于F点,则 AF ( ) A 21 33 ABAD B 21 33 ABAD C 1 3 2 3 ABAD D 12 33 ABAD 【答案】D 【解析】如图,DE EC ,E 为 CD 的中点, 设 11 222 AFAEABBCCDABADABABAD ,且 B,。
13、 专题专题 03 导数及其应用导数及其应用 1(2020 届甘肃省兰州市高三诊断)已知定义在R上的函数 f x, fx 是 f x的导函数,且满足 2x xfxf xx e, 1fe,则 f x的最小值为( ) Ae Be C 1 e D 1 e 【答案】D 【解析】由 2x xfxf xx e,变形得 2 x xfxf x e x ,即 x f x e x , x f x ec。
14、11 抛体运动模型 1(2020 山东青岛二中高三期中)如图所示,倾角为 斜面体固定在水平面上,两个可视为质点的小球甲和 乙分别沿水平方向抛出,两球的初速度大小相等,已知甲的抛出点为斜甲面体的顶点,经过段时间两球 落在斜面上 A、B 两点后不再反弹,落在斜面上的瞬间,小球乙的速度与斜面垂直。忽略空气的阻力, 重力加速度为 g。则下列选项正确的是( ) A甲、乙两球在空中运动的时间之比为 tan。
15、专题专题 14 数列综合数列综合 1(2020 届湖南省怀化市高三第一次模拟)在等比数列 n a中, 4 2a , 5 5a (1)求数列lg n a前 8 项的和; (2)若等差数列 n b满足 2244 8abab,求数列 n b的通项公式 【答案】(1)4;(2) 19 44 2 n b n 【解析】 (1) 4 8128127845 lglglglg()lg()4lg104Saaaa 。
16、专题专题 02 函数函数 1(2020 届东北三省四市教研联合体高考模拟)已知函数 2 32,0 ( ) log,0 xx f x x x ,若函数|( )|yf xm的零 点恰有 4 个,则实数m的取值范围是( ) A 33 , 10 2 B0,2 C 2 0, 3 D 3 1, 2 【答案】B 【解析】因为 2 32,0 ( ) log,0 xx f x x x ,故可得 。
17、专题专题 12 复数复数 1(2020 届安徽省合肥市高三第二次质检)欧拉公式 i ecosisin 把自然对数的底数e,虚数单位i, 三角函数cos和sin联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”,若复数z满足 i iiez ,则z ( ) A1 B 2 2 C 3 2 D 2 【答案】B 【解析】由题意 ( 1) cossin1( 1)( 1) i iiiii z eiiiii。
18、专题专题 08 数列数列 1(2020 届安徽省合肥市高三第二次质检)已知数列 n a是等差数列,若 62 2,39aS,则 7 a ( ) A18 B17 C15 D14 【答案】B 【解析】 数列an是等差数列,a22,S639, 1 1 2 6 5 639 2 ad ad , 解得 a11,d3, a71+6 317 故选 B. 2 (2020 届安徽省皖南八校高三第三次联考)已知等。
19、专题专题 11 算法算法 1(2020 届广东省东莞市高三模拟)定义运算a b为执行如图所示的程序框图输出的S值,则 (cos) (sin) 1212 ( ) A 3 2 B 3 2 C1 D1 【答案】C 【解析】当0 4 时,cossin,即cossin 1212 ,所以 2 22 3Saab 2 2cos2 3sincos1 cos3sin1 12121266 , 故选 C。 2(20。
20、专题专题 11 算法算法 1(2020 东北师大附中高三模拟(文)孙子算经是中国古代重要的数学著作,书中有一问题:“今有方物 一束, 外周一匝有三十二枚,问积几何?”, 该著作中提出了一种解决此问题的方法:“重置二位,左位减八, 余加右位,至尽虚减一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数n是 8 的整数倍时,均 可采用此方法求解,如图是解决这类问题的程序框图,若输入32n,则输。