专题专题 24 函数、不等式中恒成立问题函数、不等式中恒成立问题 【满分:150 分 时间:120 分钟】 一、一、单项单项选择题选择题(8*5=40 分分) 1当时,不等式恒成立,则的取值范围是( ) A B C D 【答案】A 【解析】 当时, 由得 令, 则易知在 上是减函数,所以时,则 2(
备战2021高考 专题20 不等式选讲教师版含解析Tag内容描述:
1、专题专题 24 函数、不等式中恒成立问题函数、不等式中恒成立问题 【满分:150 分 时间:120 分钟】 一、一、单项单项选择题选择题(8*5=40 分分) 1当时,不等式恒成立,则的取值范围是( ) A B C D 【答案】A 【解析】 当时, 由得 令, 则易知在 上是减函数,所以时,则 2(2021 江苏省天一中学高三其他模拟)已知 f(x)是定义在1,1上的奇函数,且 f(1)1,当 a。
2、专题专题 24 函数、不等式中恒成立问题函数、不等式中恒成立问题 一、练高考一、练高考 1【2020 年高考浙江卷 9】已知,a bR且0ab,若20 xaxbxab在0 x上恒成立,则 ( ) A0a B0a C0b D0b 【答案】C 【思路导引】对a分0a与0a 两种情况讨论,结合三次函数的性质分析即可得到答案 【解析】 当0a时, 在0 x上,0 xa恒成立, 只需满足20 xbxab恒成。
3、专题专题 24 函数、不等式中恒成立问题函数、不等式中恒成立问题 纵观近几年高考对于函数、不等式中恒成立问题的考查,重点是涉及到一次函数、二次函数的性质、不等 式的性质及应用,图象渗透和换元、化归、数形结合、函数与方程、分类讨论、转化等数学思想方法往往与 导数相结合,在处理复杂问题时转化成为“恒成立问题” 解答这类题目应首先克服畏惧心理,通过总结高中阶段 出现的这类问题的类型,形成完整的知识、方法。
4、专题专题 08 08 不等式不等式 1【2020 年高考全国文 10】设 35 2 log 2,log 3, 3 abc,则 ( ) Aacb Babc Cbca Dcab 【答案】A 【解析】因为 3 33 112 log 2log 9 333 ac, 3 55 112 log 3log 25 333 bc, 所以acb,故选:A 【名师点睛】本题考查对数式大小的比较,考查学生转化。
5、不等式单元不等式单元检检测测 【满分:150 分 时间:120 分钟】 一、一、单项单项选择题选择题(8*5=40 分分) 1(2021 四川成都 高三一模)设集合 2 340Ax xx, 13,Bx xxN,则AB ( ) A1,2,3 B0,1,2,3 C 14xx D24xx 【答案】B 【解析】由题意知: | 14Axx , | 24,BxxxN ,0,1,2,3AB ,故选 B 2(。
6、专题专题 08 不等式不等式 1【2020 年高考全国文 12 理 11】若 yxyx 3322,则 ( ) Aln 10yx Bln(1)0yx C0ln yx D0ln yx 【答案】A 【解析】由2233 xyxy 得:2323 xxyy ,令 23 tt f t , 2xy 为R上的增函数,3 x y 为R上的减函数, f t为R上的增函数, xy , 0yxQ ,11yx ,ln10y。
7、专题专题 09 不等式不等式 1(2020 届安徽省合肥市高三第二次质检)若实数x,y满足约束条件 240 40 3230 xy xy xy ,则2zxy的最 小值是( ) A5 B4 C7 D16 【答案】B 【解析】 作出可行域,如图射线BA,线段BC,射线CD围成的阴影部分(含边界),作直线:20lxy,向上平 移直线l时2zxy减小,当l过点 (0,4)B 时,2zxy取得最小值。
8、专题专题 14 不等式选讲不等式选讲 1(2020 云南昆明一中高三(文)已知正数a,b,c满足等式1abc. 证明:(1) 3abc ; (2) 23232333abc . 【答案】(1)见解析;(2)见解析. 【解析】 (1)要证不等式等价于 2 3abc,因为 2 2123 222 abbcac abcabcabbcac , 所以3abc,当且仅当 1 3 abc时取等号. (2)。
9、 专题专题 20 不等式选讲不等式选讲 1(2020 届湖南省怀化市高三第一次模拟)已知函数( ) |3|f xxax. (1)若3a,且不等式 ( )5f x 的解集为 37 | 22 xx ,求a的值; (2)如果对任意xR, ( )4f x ,求a的取值范围. 【答案】(1) 1a;(2) 7a或1a 【解析】 (1)若3a,则 23,3 ( )33,3 23, xax f xx。