第十九章一次函数章末复习(2) 一次函数图象与性质的应用 新课导入 上节课我们一起复习了一次函数的上节课我们一起复习了一次函数的 有关知识有关知识,这节课我们通过上节课复习这节课我们通过上节课复习 的知识要点和思想方法的知识要点和思想方法,进一步体验它进一步体验它 们的应用功能们的应用功能. 复习
变量与函数ppt课件Tag内容描述:
1、 第十九章一次函数章末复习(2) 一次函数图象与性质的应用 新课导入 上节课我们一起复习了一次函数的上节课我们一起复习了一次函数的 有关知识有关知识,这节课我们通过上节课复习这节课我们通过上节课复习 的知识要点和思想方法的知识要点和思想方法,进一步体验它进一步体验它 们的应用功能们的应用功能. 复习目标 (1)学会用等量关系列函数的关系式学会用等量关系列函数的关系式. (2)总结本章的重要。
2、 第十九章一次函数章末复习(1) 一次函数的意义、图象与性质 新课导入 回顾一下我们之前学习了哪些有关回顾一下我们之前学习了哪些有关 一次函数的知识一次函数的知识. 本节课我们来一起梳理本章的本节课我们来一起梳理本章的知识知识 结构结构、重要知识点重要知识点和和数学思想方法数学思想方法. 复习目标 (1)复习与回顾本章的重要知识点和知识结构复习与回顾本章的重要知识点和知识结构. (2)总结本。
3、1.2 1.2 反比例函数的图象与性质反比例函数的图象与性质 第第1 1章章 反比例函数反比例函数 1 1. .进一步熟悉作函数图象的步骤进一步熟悉作函数图象的步骤,会做反比会做反比 例函数的图象;例函数的图象; 学习目标学习目标 2.2.体会函数的三种表示方法的相互转化,体会函数的三种表示方法的相互转化, 对函数进行认识上的整合;对函数进行认识上的整合; 3.3.逐步提高从函数图象中获取信息。
4、4.2 4.2 一次函数一次函数与正比例函数与正比例函数 4.2 4.2 一次函数与正比例函数一次函数与正比例函数 北师北师大大版版 数学数学 八年级八年级 上册上册 4.2 4.2 一次函数一次函数与正比例函数与正比例函数 1. .什么是。
5、人教人教2019版必修第一册版必修第一册 第三章 函数的概念与性质 章末总结章末总结 教学目标及核心素养教学目标及核心素养 教学目标教学目标 1.1.掌握函数的概念掌握函数的概念; 2.2.了解分段函数,会画分段函数的图像了解分段函数,会画。
6、人教人教2019A版必修版必修 第一册第一册 4.5.1 函数零点与方程的解 第第五五章章 函数的应用二函数的应用二 1.结合二次函数的图象结合二次函数的图象,了解,了解函数的零点与方程根的联系函数的零点与方程根的联系. 2. 会求简单函数。
7、人教人教2019版必修第一册版必修第一册 第四章第四章 指数函数与对数函数指数函数与对数函数 4.5.1 4.5.1 函数的零点与方程的解函数的零点与方程的解 课程目标课程目标 1.了解函数的零点方程的根与图象交点三者之间的联系. 2.会借。
8、第7章 锐角三角函数复习,三角函数,一、基本定义:,你觉得运用时应该注意什么?,例1:如图,ABC中,AC=4,BC=3,BA=5,则 sinA=_,sinB=_. cosA=_,cosB=_. tanA=_,tanB=_.,你发现了什么了吗?,练习1、如图,在RtABC中,ACB=90,CD是斜边AB上的高,AB=5,AC=3,则sinBCD=_.,练习2、RtABC中,C=900 , 求tanB,cosA,正切值随着锐角的度数的增大而_; 正弦值随着锐角的度数的增大而_; 余弦值随着锐角的度数的增大而_.,增大,增大,减小,二、三角函数的增减性:,异名函数化为同名函数,练习1、比较大小: (1)sin250_sin430 (2)cos70_cos80 (3)sin。
9、人教人教2019A版必修版必修 第一册第一册 第三章 函数概念与性质 函数函数 函数的概念函数的概念 基本性质基本性质 幂函数幂函数 单调性最值单调性最值 奇偶性奇偶性 概念概念 表示法表示法 知识结构 一基础知识整合 1函数的概念 一般地。
10、26.2 实际问题与反比例函数,第一课时,第二课时,人教版 数学 九年级 下册,1,实际生活中的反比例函数,第一课时,返回,2,你吃过拉面吗?你知道在做拉面的过程中渗透着数学知识吗?,(1)体积为20cm3的面团做成拉面,面条的总长度 y(单位:cm)与面条粗细(横截面积)s(单位:cm2)有怎样的函数关系?,(2)某家面馆的师傅手艺精湛,他拉的面条粗1mm2,面条总长是多少?,(s0),1. 灵活运用反比例函数的意义和性质解决实际问题.,2. 能从实际问题中寻找变量之间的关系,建立数学模型,解决实际问题.,素养目标,3. 能够根据实际问题确定自变量的。
11、1.1 导数与函数的单调性(一),第三章 1 函数的单调性与极值,学习目标,1.理解导数与函数的单调性的关系. 2.掌握利用导数判断函数单调性的方法. 3.能利用导数求不超过三次多项式函数的单调区间.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 函数的单调性与导数,思考1 已知函数(1)y2x1,(2)y3x,(3)y2x,请判断它们的导数的正负与它们的单调性之间的关系.,答案 (1)y20,y2x1是增函数; (2)y30,y2x是增函数.,思考2 观察图中函数f(x),填写下表.,0,0,锐,钝,上升,下降,增加的,减少的,梳理 函数的单调性与导数符号的关系,f(x)0,f(x)0,1。
12、1.1 导数与函数的单调性(二),第三章 1 函数的单调性与极值,学习目标,1.会利用导数证明一些简单的不等式问题. 2.掌握利用导数研究含参数的单调性的基本方法.,问题导学,达标检测,题型探究,内容索引,问题导学,f(x)0能推出f(x)为 ,但反之不一定.因为函数f(x)x3在(,)上是增加的,但f(x)0,因此f(x)0是f(x)为增函数的充分不必要条件.f(x)为增函数的充要条件:f(x)0(当且仅当有限个x或无限个离散的x使得等号成立).,增函数,知识点一 导数与单调性的关系,已知f(x)在区间D上是增加的,求f(x)中的参数值问题,这类问题往往转化为不等式的恒成立问题。
13、微专题一 多元变量的最值问题,第二章 函数概念与基本初等函数,经验分享 在数学中经常碰到求含有多个变量的最值问题,此类题目题型众多,解法也很多,学生在面对含有多个变量的问题时,最大的困扰是不知从何处入手.对于高中生,主要掌握的是一元变量的最值问题.因此,解决多元变量的最值问题,减元是常见的办法.,一、代入减元 例1 设x,yR,且2x8yxy0,求xy的最小值.,所以,当x12,y6时,xy取得最小值18.,点评 此题是一道学生经常见到的求多变量最值的试题,虽然此解法不是最优的解法,但可能是学生比较容易想到的解法.它的优点是由前面的。
14、2.1 函 数 2.1.1 函 数 第1课时 变量与函数的概念,学习目标 1.理解函数的概念,了解构成函数的三要素. 2.能正确使用区间表示数集. 3.会求一些简单函数的定义域、函数值.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.在初中,学习过正比例函数、反比例函数、一次函数、二次函数等,它们的表达形式分别为 , , . 2.反比例函数y (k0)在x0时 .,无意义,ykx(k0),yaxb(a0),yax2bxc(a0),预习导引 1.函数 (1)函数的定义:设集合A是一个非空的数集,对A中的 ,按照确定的法则f,都有 。
15、,第十九章 一次函数,19.1 函数,第十九章 一次函数,19.1 函数,考场对接,考场对接,题型一 识别常量与变量,C,题型二 识别函数,B,D,x-1且x0,0x25,题型三 求函数自变量的取值范围,C,题型四 求函数值,题型五 从函数图像中获取信息,C,图19-1-8,图19-1-9,A,题型六 利用函数解析式解决实际问题,题型七 利用函数关系解规律探究题,3,6,10,谢 谢 观 看!,。
16、19.1.1 变量与函数,汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h.,导入新课,一导学,学习目标: 1了解变量与常量及函数的意义; 2体会运动变化过程中的数量变化 学习重点: 了解变量与常量的意义,充分体会运动变化过程 中量的变化 学习难点: 函数的概念理解及应用,指出下列四个问题中的变量和常量:,1.汽车以60km/h的速度匀速行驶,行驶路程为skm,行驶时间为th.,二探究,2.电影票的售价为10元/张.第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各为多少?设一场电影售出x张票,票房收入。
17、3.8 变量与函数,学习目标,了解常量,变量的定义 了解常用标准函数的意义,一、变量与常量,1 .变量 在程序执行过程中,值会发生改变的量,称为变量,用来标识变量的标识符称为变量名。 (1)变量命名规则 只能由字母、数字、下划线和中文文字组成; 第一个字符必须是英文字母或中文文字; 有效长度为255个字符; 不能使用VB关键字。,一、变量与常量,合法的变量名: A3;中s;abc_3;a量8 非法的变量名: Dim Dim是VB的关键字 a!7 不允许出现感叹号 a3 不能以下划线开头 3a 不能以数字开头 VB中变量名不区分大小写,即ABC、abc、Abc是相同的。