人教人教A版版 必修必修 第一册第一册 2.2 基本不等式第1课时 第二章 一元二次函数方程和不等式 2002年在北京召开的第24届国际数学家大会会标 情境导学 思考思考1 1:这图案中含有怎样的几何图形:这图案中含有怎样的几何图形 思考思,苏科数学,11.3 不等式的性质,南京市第二十九中学初中部
不等式复习课课件Tag内容描述:
1、人教人教A版版 必修必修 第一册第一册 2.2 基本不等式第1课时 第二章 一元二次函数方程和不等式 2002年在北京召开的第24届国际数学家大会会标 情境导学 思考思考1 1:这图案中含有怎样的几何图形:这图案中含有怎样的几何图形 思考思。
2、,苏科数学,11.3 不等式的性质,南京市第二十九中学初中部 姜滢,苏科数学,复习回顾,解方程:(1)x14;(2)2x6 1在解一元一次方程时,我们主要是对方程进行变形,方程变形主要有哪些? 2这些变形具体步骤的主要依据是等式的两条基本性质,等式具有哪些基本性质呢?,探究归纳,合作探究1: 弟弟今年a岁,哥哥今年b岁,下面是弟弟和哥哥的一段对话:哥哥说:“再过3年我比你大”; 弟弟说:“3年前你比我大”他们的判断对吗?为什么?你能写出相应的不等式吗?,不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号。
3、第3讲 柯西不等式与排序不等式1设a,bR且ab1,求证:.证明:因为(1212)25.所以.2设a、b、c是正实数,且abc9,求的最小值解:因为(abc)()2()2()218.所以2.当且仅当abc时取等号,所以的最小值为2.3已知x,y,z均为实数若xyz1,求证:3.证明:因为()2(121212)(3x13y23z3)27.所以3.当且仅当x,y,z0时取等号4已知函数f(x)2|x1|x2|.(1)求f(x)的最小值m;(2)若a,b,c均为正实数,且满足abcm,求证:3.解:(1)当x1时,f(x)2(x1)(x2)3x(3,);当1x2时,f(x)2(x1)(x2)x43,6);当x2时,f(x)2(x1)(x2)3x6,。
4、7.1不等关系与不等式最新考纲考情考向分析1.了解现实世界和日常生活中存在着大量的不等关系2.了解不等式(组)的实际背景.以理解不等式的性质为主,本节在高考中主要以客观题形式考查不等式的性质;以主观题形式考查不等式与其他知识的综合属低档题.1两个实数比较大小的方法(1)作差法 (a,bR)(2)作商法 (aR,b0)2不等式的基本性质性质性质内容特别提醒对称性abbb,bcac可加性abacbc可乘性acbc注意c的符号acbd同向同正可乘性acbd可乘方性ab0anbn(nN,n1)a,b同为正数可开方性ab0(nN,n1)3.不等式的一些常用性质(1)倒。
5、 2018-2019 学年初三数学专题复习 不等式与不等式组一、单选题 1.如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过 200 元,则她的第二份餐点最多有几种选择?( )A. 5 B. 7 C. 9 D. 112.不等式组 的解集在数轴上表示正确的是( ) A. B. C. D. 3.不等式 9-3x 的解集是 ( )A. x 3 B. x3 C. x3 。
6、7.1 不等关系与不等式,第七章 不等式,ZUIXINKAOGANG,最新考纲,1.通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系. 2.了解不等式(组)的实际背景.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.两个实数比较大小的方法,知识梳理,ZHISHISHULI,2.不等式的基本性质,ba,ac,acbc,acbc,acbc,acbd,acbd,anbn,2.两个同向不等式可以相加和相乘吗?,提示 可以相加但不一定能相乘,例如21,13.,【概念方法微思考】,题组一 思考辨析,1.判断下列结论是否正确(请在括号中打“”或。
7、百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲。
8、第一讲第一讲 不等式和绝对值不等式不等式和绝对值不等式 复习课复习课 学习目标 1.梳理本讲的重要知识要点,构建知识网络.2.进一步强化对基本不等式的理解 和应用, 尤其注意等号成立的条件.3.巩固对绝对值三角不等式的理解和掌握, 进一步熟练绝 对值三角不等式的应用.4.会解绝对值不等式 1实数的运算性质与大小顺序的关系:abab0,abab0,abab0, 由此可知要比较两个实数的大小,判断差。
9、第三讲第三讲 柯西不等式与排序不等式柯西不等式与排序不等式 复习课复习课 学习目标 1.梳理本专题主要知识,构建知识网络.2.进一步理解柯西不等式,熟练掌握柯 西不等式的各种形式及应用技巧.3.理解排序不等式及应用.4.进一步体会柯西不等式与排序 不等式所蕴含的数学思想及方法 1二维形式的柯西不等式 (1)二维形式的柯西不等式:若 a,b,c,d 都是实数,则(a2b2)(c2d2)(acbd)。
10、不等式与不等式组一、选择题 1.若 ab ,则下列各不等式中一定成立的是( ) A. a1b1 B. a b C. D. acbc2.不等式 2x80 的正整数解有( ) A. 1 个 B. 2 个 C. 3 个 D. 4 个3.不等式组 的解集是( ) A. x3 B. x2 C. 3x2 D. 无解。
11、第2讲 不等式与不等式组,第二章 方程与不等式,2020年广东中考复习课件,1.结合具体问题,了解不等式的意义,探索不等式的基本,性质.,2.会解数字系数的一元一次不等式,并能在数轴上表示出 解集;会用数轴确定由两个一元一次不等式组成的不等式组的 解集.,3.能够根据具体问题中的数量关系,列出一元一次不等式,,解决简单的问题.,1.(2019 年浙江宁波)不等式,3x 2,x 的解集为(,),B.x1 D.x1,A.x1 C.x1 答案:A,2x60, 2x0,的解集在数轴,2.(2019 年广西梧州)不等式组 上表示为( ) A. B. C. D. 答案:C,3.不等式组 A.1 个,x50, 42x0 B.2 个,的。
12、中考数学基础复习专题(三)不等式和不等式组【知识要点】 知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。知识点3、不等式的解集在数轴上的表示:(1)xa:数轴上表示a的点画成空心圆圈,表示a的点的右边部分来表示;(2)xa:数轴上表示a的点画成空心圆圈,表示a的点的左边部分来表示;(3)xa:数轴上表示a的点画成实心圆点,表示a的点及表示a的点的右边部分来表示;(4)xa:数轴上表示a的点画成实心圆点,表示a的点及表示a的点的左边。
13、章末复习课,第三章 不等式,1.整合知识结构,进一步巩固、深化所学知识. 2.能熟练利用不等式的性质比较大小、变形不等式、证明不等式. 3.体会“三个二次”之间的内在联系在解决问题中的作用. 4.能熟练地运用图解法解决线性规划问题. 5.会用基本不等式求解函数最值.,学习目标,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 “三个二次”之间的关系,所谓三个二次,指的是二次 图象及与x轴的交点;相应的一元二次 的实根;一元二次 的解集端点. 解决其中任何一个“二次”问题,要善于联想其余两个,并灵活转化.,函数,不等式,方程,知。
14、第8课时 不等式与不等式组,考点梳理,自主测试,考点梳理,自主测试,考点二 一元一次不等式(组)的解法 1.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式叫做一元一次不等式. 2.解一元一次不等式的基本步骤:去分母、去括号、移项、 合并同类项、系数化为1. 3.一元一次不等式组:含有同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组. 4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.,考点梳理,自主测试,5.一元一次不等式组解集的确定方法: 若ab,则。
15、第二章 方程与不等式,第8讲 不等式与不等式组,01,02,03,04,目录导航,课 前 预 习,D,A,D,考 点 梳 理,xa,axb,课 堂 精 讲,C,C,B,2,往年 中 考,D,D,x3,B,1x4,3x1,。
16、复习课,第一讲不等式和绝对值不等式,学习目标 1.梳理本讲的重要知识要点,构建知识网络. 2.进一步强化对基本不等式的理解和应用,尤其注意等号成立的条件. 3.巩固对绝对值三角不等式的理解和掌握,进一步熟练绝对值三角不等式的应用. 4.会解绝对值不等式.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.实数的运算性质与大小顺序的关系:abab0,abab0,abab0,由此可知要比。
17、复习课,第三讲柯西不等式与排序不等式,学习目标 1.梳理本专题主要知识,构建知识网络. 2.进一步理解柯西不等式,熟练掌握柯西不等式的各种形式及应用技巧. 3.理解排序不等式及应用. 4.进一步体会柯西不等式与排序不等式所蕴含的数学思想及方法.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.二维形式的柯西不等式 (1)二维形式的柯西不等式:_。