第第22讲讲垂直平分线垂直平分线1.垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.PD为线段AB的垂直平分线,必然需要连接PA、PB,构造出等腰PAB,进而求解.逆定理:若PA=PB,则点P在AB的垂直平分线上.【例题讲解】【例题讲解】例例题题11、如图,在ABC中,点D、E
垂直平分线Tag内容描述:
1、 专题专题 15 15 线段垂直平分线问题线段垂直平分线问题 1. 1. 线段的垂直平分线定义线段的垂直平分线定义 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线 2.2.线段垂直平分线的做法线段垂直平分线的做法 求作线段 AB 的垂直平分线. 作法:(1)分别以点 A,B 为圆心,以大于 AB/2 的长为半径作弧,两弧相交于 C,D 两点; 说明:作弧时的半。
2、角平分线与线段的垂直平分线角平分线与线段的垂直平分线 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、角平分线:一、角平分线: 1.1.角的平分线定义:角的平分线定义: (1)从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线;如图, 因为 AD 是BAC 的平分线,所以1=2=BAC; (2)类似地,还有角的三等分线等。 2.角平分线的作法(尺规作图): (1)以点 。
3、 一、选择题一、选择题 5(2019泰州泰州) 如图所示的网格由边长相同的小正方形组成,点 A、B、C、D、E、F、G 在小正方形的顶点上, 则 ABC 的重心是( ) A.点 D B.点 E C.点 F D.点 G 第 5 题图 【答案答案】A 【解析】【解析】 三角形的重心是三条中线的交点,由图中可知,ABC 的三边的中点都在格点上,三条中线如图所示交于点 D,故选 A. 第 5 题图。
4、第 1 页 / 共 18 页 专题专题 15 15 线段垂直平分线问题线段垂直平分线问题 1. 1. 线段的垂直平分线定义线段的垂直平分线定义 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线 2.2.线段垂直平分线的做法线段垂直平分线的做法 求作线段 AB 的垂直平分线. 作法: (1)分别以点 A,B 为圆心,以大于 AB/2 的长为半径作弧,两弧相交于 C。
5、第 1 页 / 共 7 页 专题专题 15 15 线段垂直平分线问题线段垂直平分线问题 1. 1. 线段的垂直平分线定义线段的垂直平分线定义 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线 2.2.线段垂直平分线的做法线段垂直平分线的做法 求作线段 AB 的垂直平分线. 作法: (1)分别以点 A,B 为圆心,以大于 AB/2 的长为半径作弧,两弧相交于 C,。
6、 线段的垂直平分线与角平分线 第2讲 适用学科 初中数学 适用年级 初中二年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.线段的垂直平分线 2.角平分线 教学目标 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 教学重点 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 教学难点 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 。
7、 线段的垂直平分线与角平分线 第2讲 适用学科 初中数学 适用年级 初中二年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.线段的垂直平分线 2.角平分线 教学目标 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 教学重点 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 教学难点 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 。
8、 知识点知识点 22 线段垂直平分线、角平分线、中位线线段垂直平分线、角平分线、中位线 一、选择题一、选择题 6(2020 枣庄)如图,在 ABC 中,AB 的垂直平分线交 AB 于点 D,交 BC 于点 E,连接 AE若 BC=6,AC=5,则 ACE 的周长为( ) A8 B11 C16 D17 答案B解析利用线段垂直平分线的性质进行等线段间的转换, 然后整体求值 DE 垂直 平分 AB,。
9、第第 2 2 讲讲 垂直平分线垂直平分线 1.垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等. PD 为线段 AB 的垂直平分线,必然需要连接 PA、PB,构造出等腰PAB,进而求解. 逆定理:若 PA=PB,则点 P在 AB的垂直平分线上. 【例题讲解】【例题讲解】 例例题题 1 1、如图,在ABC中,点 D、E、F 分别在 BC、AB、AC 上.BD=CF,BE=CD,DGEF 于点 G,且 EG=FG.求证:AB=AC. 【分析】可知 GD为 EF的垂直平分线,遇见垂直平分线,必然要将垂直平分线上的点与线段两端点连接 【解答】解:连接 DE、DF 如右图所示 ,DGEF EGFG DED。
10、 一、选择题一、选择题 5(2019泰州泰州) 如图所示的网格由边长相同的小正方形组成,点 A、B、C、D、E、F、G 在小正方形的顶点上, 则 ABC 的重心是( ) A.点 D B.点 E C.点 F D.点 G 第 5 题图 【答案答案】A 【解析】【解析】 三角形的重心是三条中线的交点,由图中可知,ABC 的三边的中点都在格点上,三条中线如图所示交于点 D,故选 A. 第 5 题图 4 (2019盐城)盐城)如图,点 D、E 分别是ABC 边 BA、BC 的中点,AC3,则 DE 的长为( ) A2 B C3 D 【答案】【答案】D 【解析】【解析】由中位线的定义可知 DE 是ABC 的中位线,进而由中位线的性。
11、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 线段的垂直平分线与角的平分线线段的垂直平分线与角的平分线 待提升的知 识点/题型 (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知识点一:逆命题和逆定理知识点一:逆命题和逆定理 1.逆命题逆命题 在两个命题中, 如果第一个命题的题设是第二个命题的结论, 而。
12、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 线段的垂直平分线与角的平分线线段的垂直平分线与角的平分线 待提升的知 识点/题型 (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知识点一:逆命题和逆定理知识点一:逆命题和逆定理 1.逆命题逆命题 在两个命题中, 如果第一个命题的题设是第二个命题的结论, 而。
13、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。
14、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。
15、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。
16、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。
17、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。
18、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。
19、北师大版八年级(下),1.3线段的垂直平分线,第一章 三角形的证明,第1课时 线段垂直平分线的性质与判定,复习引入,线段垂直平分线的性质:,你能证明这一结论吗?,线段垂直平分线上的点到这条线段两个端点的距离相等.,线段垂直平分线的定义:,过某条线段的中点,并且垂直于这条线段的直线叫做这条 线段的垂直平分线,简称中垂线.,北师大版八年级(下),1.3线段的垂直平分线,第一章 三角形的证明,第1课时 线段垂直平分线的性质与判定,学习目标,1.会证明线段的垂直平分线的性质定理及判定定理。 2.能运用线段垂直平分线的性质定理和判定定理解决问。
20、一、选择题1 (2018 北京市东城区初二期末)如图,在ABC 中, B=C=60 ,点 D 为 AB 边的中点,DEBC 于 E, 若 BE=1,则 AC 的长为 EDAB C A2 B C4 D 323解:C2.(2018 北京市平谷区初二期末)如图,在 RtABC 中,C=90 ,点 D 为 AB 边中点,DEAB,并与 AC 边交于点 E. 如果A=15 ,BC=1,那么 AC 等于( ).A. 2 B. 31C. D.3答案:C3. (2018 北京市顺义区八年级期末)如图,AD 是 ABC 的角平分线,DEAB 于点 E,SAB C=10,DE =2,AB= 4, 则 AC 长是A.9 B. 8 C. 7 D. 6答案:D4 (2018 北京市西城区八年级期末)如图,在ABC 中,BC 的 垂。
21、 北师大版八年级数学下册 1.3 线段的垂直平分线 同步练习一、单选题(共 10 题;共 20 分)1.如图,在ABC 中,分别以点 A 和点 B 为圆心,大于 AB 长为半径画弧,两弧分别相交于点 M,N ,作12直线 MN,交 BC 于点 D,连结 AD若ADC 的周长为 10,AB7 ,则ABC 的周长为( )A.27 B.14 C.17 D.202.在 中,ACB=90 ,斜边 的中垂线 分别交 BC,AB 于点 D,E已知 BD=5,CD=3 ,Rt ABC AB DE则 AC 的长为( ) A.8 B.4 C. D.23.如图,在ABC 中,AB AC,D 是 BC 的中点,AC 的垂直平分线交 AC,AD,AB 于点 E,O,F,则图中全等三角形的对数是( )。