欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

初中数学最值

第第 13 讲讲 解析几何中的定点定值最值问题解析几何中的定点定值最值问题 高考预测一:最值问题高考预测一:最值问题 类型一:弦长或面积问题类型一:弦长或面积问题 1如图,已知抛物线21:2Cxpy的焦点在抛物线22:1Cyx上,点P是抛,的运动轨迹是与x轴垂直的一段线段MN,当线段CP与MN垂直

初中数学最值Tag内容描述:

1、 第第 13 讲讲 解析几何中的定点定值最值问题解析几何中的定点定值最值问题 高考预测一:最值问题高考预测一:最值问题 类型一:弦长或面积问题类型一:弦长或面积问题 1如图,已知抛物线21:2Cxpy的焦点在抛物线22:1Cyx上,点P是抛。

2、的运动轨迹是与x轴垂直的一段线段MN,当线段CP与MN垂直时,线段CP的值最小【母题解答】【思想方法】(1)最值(或最短路径)问题的背景来源主要有:角、等腰(边)三角形、菱形、正方形以及圆等从内容上看,还会引申到“两线段差最大”问题、三角形(四边形)的周长最小问题、面积最大等除此之外,解决最值问题常常借助极端点(2)一般地,解决线段和差最值问题的目标是“化曲为直”,手段通常是遇“和”转化为异侧,遇“差”转化为“同侧”,根据是轴对称和全等三角形,常用方法是利用轴对称图形中的“已知”的对称点涉及的知识点有“两点之间线段最短”“垂线段最短”“三角形三边关系”“轴对称”“平移”等【母题多变】变化1:几何与最值点A,B是线段l异侧的两点,点P为l上的一点,则点P使得|PAPB|最大点E在等腰三角形的腰AB上,则点P使得PBPE最小E是AB上的定点,点P在正方形对角线BD上,则点P使得PAPE最小A,B是圆上的两点,点P在直径CD上,则点P使得PAPB最小直线l上的点M,。

3、 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。
2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。
基础知识回顾基础知识回顾: : 二次函数的图象和性质 二次函数的 图象和性质 图象 开口 向上上 向下下 对 称 轴 x 顶 点 坐标 增 减 性 当x时, y随x的增大而增大增大; 当 x时, y 随 x 的增大。

4、2020 年中考数学试题分类汇编之十四 最值类题 一、选择题 10 (2020 成都) (3 分)关于二次函数 2 28yxx,下列说法正确的是( ) A图象的对称轴在y轴的右侧 B图象与y轴的交点坐标为(0,8) C图象与x轴的交点坐标为( 2,0)和(4,0) Dy的最小值为9 【解答】解:二次函数 22 28(1)9(4)(2)yxxxxx , 该函数的对称轴是直线1x ,在y轴的左侧,故。

5、点M,N,则说明点P在MN上运动,再作A点关于点M的对称点A1,就可得出PAPBPA1PBA1B,则只需求出A1B即可【自主解答】 【方法点拨】对于几何图形最值问题,常用的策略是转化,就是把握点运动的全过程,要注意用运动与变化的眼光去观察和研究图形,抓住其中的等量关系和变量关系,其次,画出图形,随着点的移动,与之相关的图形也会发生改变,而且点移动到不同的位置,我们要研究的图形可能会改变当一个问题是确定图形的变量之间关系时,通常建立函数模型求解,当确定图形之间的特殊位置关系或一些特殊值时,通常建立方程模型求解在解题时,常常需要作辅助线帮助理清思路,然后利用直角三角形或圆的有关知识解题如本题,作辅助线,利用轴对称的性质将问题转化为三角形中两边之和大于第三边,当P点在A1B上时,PAPB取得最小值【难点突破】本题的突破口是根据SPABS矩形ABCD推出P点的运动轨迹是在平行于AB的线段上,从而想到利用轴对称将问题转化1如图,在RtAOB中,OAOB3,O的半径为1,点P是AB边上的动点,过点P作圆O的一条切线PQ(点。

6、 1 【类型综述】 线段和差的最值问题,常见的有两类: 第一类问题是“两点之间,线段最短” 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是 “两点之间,线段最短”结合“垂线段最短” 【方法揭秘】 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球。

7、示数的字母,最后整理、变形,根据要求写出定义域关 键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错 【方法揭秘】 由勾股定理产生的函数关系,在两种类型的题目中比较常用 类型一,已知“边角边”,至少一边是动态的,求角的对边如图 1,已知点 A 的坐标为(3, 4),点 B 是 x 轴 正半轴上的一个动点,设 OBx,ABy,那么我们在直角三角形 ABH 中用勾股定理,就可以得到 y 关于 x 的函数关系式 类型二,图形的翻折已知矩形 OABC 在坐标平面内如图 2 所示,AB5,点 O 沿直线 EF 翻折后,点 O 的对应点 D 落在 AB 边上,设 ADx,OEy,那么在直角三角形 AED 中用勾股定理就可以得到 y 关于 x 的函数关系式 图 1 图 2 【典例分析】 例 1 如图 1,在 RtABC 中,BAC90 ,B60 ,BC16cm,AD 是斜边 BC 上的高,垂足为 D,BE 1cm,点 M 从点 B 出发沿 BC 方向以 1cm/s 的速度运动,点 N 从点 E 出发,与点 。

8、值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得出y的最值。
4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质在实数范围内,显然有,当且仅当时,等号成立,即的最小值为k。
6. 零点区间讨论法用“零点区间讨论法”消去函数y中绝对值符号,然后求出y在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解在不等式中,是最大值,在不等式中,是最小值。
8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
专题典型题考法及解析 【例题1】(经典题)二次函数y=2(x3)24的最小值为 【答案】4【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答。

9、值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得出y的最值。
4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质在实数范围内,显然有,当且仅当时,等号成立,即的最小值为k。
6. 零点区间讨论法用“零点区间讨论法”消去函数y中绝对值符号,然后求出y在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解在不等式中,是最大值,在不等式中,是最小值。
8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
专题典型题考法及解析 【例题1】(经典题)二次函数y=2(x3)24的最小值为 【例题2】(2018江西)如图,AB是O的弦,AB=5,点C是O上的一个动点,且。

10、次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.【典例指引】类型一 角的最值问题例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【解析】类型二 距离的最值问题例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值【解析】类型三 几何图形的面积的范围问题例3【2016高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于。

11、或“光的两次反射”问题,关键是指出两条对称轴“反射镜面” (如图 2) 两条线段差的最大 值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长如图 3,PA 与 PB 的差的最大值就是 AB,此时点 P 在 AB 的延长线上,即 P解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题图 1 图 2 图 3如图 4,正方形 ABCD 的边长为 4,AE 平分BAC 交 BC 于 E点 P 在 AE 上,点 Q 在 AB 上,那么BPQ周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE 是河流,但是点 Q 不确定啊第一步,应用“两点之间,线段最短”如图 5,设点 B 关于“河流 AE”的对称点为 F,那么此刻 PFPQ 的最小值是线段 FQ第二步,应用“垂线段最短” 如图 6,在点 Q 运动过程中,FQ 的最小值是垂线段 FH这样,因为点 B 和河流是确定的,所以点 F 是确定的,于是垂线段 FH 也是确定的图 4 。

12、理、变形,根据要求写出定义域关 键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错 【方法揭秘】 由勾股定理产生的函数关系,在两种类型的题目中比较常用 类型一,已知“边角边”,至少一边是动态的,求角的对边如图 1,已知点 A 的坐标为(3, 4),点 B 是 x 轴 正半轴上的一个动点,设 OBx,ABy,那么我们在直角三角形 ABH 中用勾股定理,就可以得到 y 关于 x 的函数关系式 类型二,图形的翻折已知矩形 OABC 在坐标平面内如图 2 所示,AB5,点 O 沿直线 EF 翻折后,点 O 的对应点 D 落在 AB 边上,设 ADx,OEy, 那么在直角三角形 AED 中用勾股定理就可以得到 y 关于 x 的函数关系式 图 1 图 2 【典例分析】 例 1 如图 1,在 RtABC 中,BAC90 ,B60 ,BC16cm,AD 是斜边 BC 上的高,垂足为 D,BE 1cm,点 M 从点 B 出发沿 BC 方向以 1cm/s 的速度运动,点 N 从点 E 出发,与点 M 同时同方向以。

13、次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.学科网【典例指引】类型一 角的最值问题例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【解析】(I)由题意知 ,所以 ,因此 椭圆的方程为.()设,联立方程得,由题意知,且,所以 .由题意可知圆的半径为由题设知,所以因此直线的方程为.因此 ,当且仅当,即时等号成立,此时,所以 ,因此,所以 最大值为.综上所述:的最大值为,取得最大值时直线的斜率为.类型二 距离的最值问题例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值。

14、次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.【典例指引】类型一 角的最值问题例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【解析】类型二 距离的最值问题例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值【解析】类型三 几何图形的面积的范围问题例3【2016高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于。

15、同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有(  )A4 个    B5 个    C6 个    D7 个3跳台滑雪是冬季奥运会比赛项目之一运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度 (单位: )与水平距离 (单位: )近似满足函数关系 ( ) 下图记录了某运动员起跳后的 与 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A     B     C     D 4如图,平面直角坐标系中,P 经过三点 A(8,0 ) ,O(0 ,0) ,B(0,6) ,点 D 是P 上的一动点当点 D 到弦 OB 的距离最大时,tan BOD 的值是(  )A2     B3 &。

16、或“光的两次反射”问题,关键是指出两条对称轴“反射镜面” (如图 2) 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长如图 3,PA 与 PB 的差的最大值就是 AB,此时点 P 在 AB 的延长线上,即 P解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题图 1 图 2 图 3如图 4,正方形 ABCD 的边 长为 4,AE 平分BAC 交 BC 于 E点 P 在 AE 上,点 Q 在 AB 上,那么BPQ周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE 是河流,但是点 Q 不确定啊第一步,应用“两点之间,线段最短”如图 5,设点 B 关于“河流 AE”的对称点为 F,那么此刻 PFPQ 的最小值是线段 FQ第二步,应用“垂线段最短” 如图 6,在点 Q 运动过程中,FQ 的最小值是垂线段 FH这样,因为点 B 和河流是确定的,所以点 F 是确定的,于是垂线段 FH 也是确定的图 4 。

17、次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.学【典例指引】类型一 角的最值问题例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【解析】(I)由题意知 ,所以 ,因此 椭圆的方程为.()设,联立方程得,由题意知,且,所以 .由题意可知圆的半径为由题设知,所以因此直线的方程为.因此 ,当且仅当,即时等号成立,此时,所以 ,因此,所以 最大值为.综上所述:的最大值为,取得最大值时直线的斜率为.类型二 距离的最值问题例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值。

18、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。

19、D 对折后再展开,得到折痕EF,M 是 BC 上一点,沿着 AM 再次折叠纸片,使得点 B 恰好落在折痕 EF 上的点 B处,连接 AB,BB判断AB B 的形状为 ;若 P 为线段 EF 上一动点 ,当 PB+PM 最小时,请描述点 P 的位置为 解:等边三角形; 与 的交点EFA三、解答题3.(2018 北京通州区一模)MBFEDBACFEDABC MBFEDBAC答案:4. (2018 北京房山区一模) 抛物线 分 别交 x 轴于点 A( 1,0) ,23yaxb=+-C(3,0) ,交 y 轴于点 B,抛物线的对称轴与 x 轴相交于点 D. 点 P 为线段 OB 上的点,点 E 为线段 AB 上的点,且 PE AB.(1)求抛物线的表达式;(2)计算 的值;PEPB(3)请直接写出 的最小值为 .12PB+PD解:(1)抛物线经过点 A( 1,0) ,C(3,0) , 1 分93ab。

20、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。

【初中数学最值】相关DOC文档
2022年高考数学一轮复习《第13讲解析几何中的定点定值最值问题》专题练习
2020浙江中考数学精准大二轮复习核心母题一:最值问题
中考数学热点难点突破:第1.7讲求二次函数的最值(解析版)
2020年中考数学试题分类汇编之十四 最值类题
2020年安徽中考数学总复习专题突破二:几何图形最值问题
中考数学压轴专练专题10 二次函数与线段关系及最值定值问题 (教师版)
2020年中考数学必考专题33最值问题(解析版)
2020年中考数学必考专题33最值问题(原创版)
专题10 几何中的最值与定值问题-2019届突破中考数学压轴题讲义(原卷版)
中考数学压轴专练专题10 二次函数与线段关系及最值定值问题 (学生版)
2019年中考数学冲刺专题: 最值问题(含解析)
专题10 几何中的最值与定值问题-2019届突破中考数学压轴题讲义(解析版)
2019年北京中考数学习题精选:最值类问题
初三数学讲义直升班 第9讲 二次函数的线段最值和面积最值(教师版)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开