专题五二次函数综合题 类型一 与一次函数图象的交点问题 (2019三明质检)已知抛物线C:y1a(xh)22,直线l:y2kxkh2(k0) (1)求证:直线l恒过抛物线C的顶点; (2)若a0,h1,当txt3时,二次函数y1a(xh)22的最小值为2,求t的取值范围; (3)点P为抛物线的顶点,
初中中考函数动态综合题Tag内容描述:
1、专题五二次函数综合题类型一 与一次函数图象的交点问题(2019三明质检)已知抛物线C:y1a(xh)22,直线l:y2kxkh2(k0)(1)求证:直线l恒过抛物线C的顶点;(2)若a0,h1,当txt3时,二次函数y1a(xh)22的最小值为2,求t的取值范围;(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1k3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围【分析】(1)将抛物线顶点坐标代入直线l的解析式中即可求证;(2)由二次函数最小值为2可知,th1t3,解不等式即可得解;(3)使y1y2得点Q的横坐标为h,分类讨论a0和a0的两种情况即可。
2、专题五二次函数综合题类型一 线段(周长)问题(2019烟台)如图,顶点为M的抛物线yax2bx3与x轴交于A(1,0),B两点,与y轴交于点C,过点C作CDy轴交抛物线于另一点D,作DEx轴,垂足为点E,双曲线y(x0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,BPD的度数最大?(请直接写出结果)【分析】(1)由已知求出D点坐标,将点A(1,0)和D代入yax2bx3即可;(2)作M关于y。
3、2019年中考数学真题分类训练专题十九:二次函数综合题1(2019广东)如图1,在平面直角坐标系中,抛物线y=与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,CAD绕点C顺时针旋转得到CFE,点A恰好旋转到点F,连接BE(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1x轴于点D1,点P是抛物线上一动点,过点P作PMx轴,点M为垂足,使得PAM与DD1A相似(不含全等)求出一个满足以上条件的点P的横坐标;直接回答这样的点P共有几个?解:(1)令=0,解得x1=1,x2=7A(1。
4、 1 专题专题 14 函数的综合问题函数的综合问题 1.一次函数与二次函数的综合。 2.一次函数与反比例函数的综合。 3.二次函数与反比例函数的综合。 4.一次函数、二次函数和反比例函数的综合。 【例题【例题 1】(2019 黑龙江绥化黑龙江绥化)一次函数 y1x+6 与反比例函数 y2 8 x (x0)的图象如图所示.当 y1y2时,自 变量 x 的取值范围是_. 第 18。
5、 专题专题 10 动点类综合题目探究动点类综合题目探究 题型一:题型一:二次函数中三角形面积最值二次函数中三角形面积最值存存及平行四边形存及平行四边形存在性问题在性问题 例例 1. (2019 巴中) 巴中) 如图, 抛物线 2 5yaxbx(a0) 经过 x 轴上的点 A(1,0)和点 B 及 y 轴上的点 C, 经过 B、C 两点的直线为yxn. (1)求抛物线解析式; (2)动点 P 从点 A 出发,在线段 AB 上以每秒 1 个单位的速度向 B 运动,同时动点 E 从点 B 出发,在线段 BC 上以每秒 2 个单位的速度向 C 运动. 当其中一个点到达终点时, 另一点也停止运动. 设。
6、二次函数综合题类型一 线段、周长最值问题1. 如图,在平面直角坐标系中,抛物线 yx 2x2 的图象与 x 轴相交于点 A、 B,与 y 轴交于点 C,过直线 BC 的下方抛物线上一动点 P 作PQAC 交线段 BC 于点 Q,再过点 P 作 PEx 轴于点 E,交 BC 于点 D.(1)求直线 AC 的解析式;(2)求PQD 周长的最大值及此时点 P 的坐标;(3)如图,当 PQD 的周长最大值时,在 y 轴上有两个动点 M、N(M在 N 的上方),连接 AM,PN,若 MN1,求 PNMNAM 的最小值第 1 题图解:(1)令 y0,即 x2x20,解得 x1 1,x 22,A(1,0),B(2 ,0),令 x0,则 y2,C(0,2) ,。
7、 几何图形综合题1. 如图,抛物线 (a0)与 y 轴交于点 C(0,4),与 x 轴交ycxa2于点 A、B ,点 A 坐标为(4,0)(1)求抛物线的解析式;(2)抛物线的顶点为 N,在 x 轴上找一点 K,使 CKKN 最小,并求出点K 的坐标;(3)已知 D 是 OA 的中点,点 P 在第一象限的抛物线上,过点 P 作 x 轴的平行线,交直线 AC 于点 F,连接 OF,DF.当 OFDF 时,求点 P 的坐标第 1 题图解:(1)抛物线 yax 2ax c 经过点 A(4,0),C(0,4), 解得,40816ca,41ca抛物线的解析式为 y x x 4;12(2)y x x 4 (x1) ,12 12 92N(1, ),92如解图,作点 C 关于 。
8、 1 专题专题 14 函数的综合问题函数的综合问题 1.一次函数与二次函数的综合。 2.一次函数与反比例函数的综合。 3.二次函数与反比例函数的综合。 4.一次函数、二次函数和反比例函数的综合。 【例题【例题 1】(2019 黑龙江绥化黑龙江绥化)一次函数 y1x+6 与反比例函数 y2 8 x (x0)的图象如图所示.当 y1y2时,自 变量 x 的取值范围是_. 第 18。
9、 考纲要求考纲要求: : 1. 结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的关系式. 借助实际问题情景建立反比例函数关系式,体会反比例函数的意义; 能根据实际问题中数量关系直接列出反比例函数关系式. 在给定已知条件下,能够确定反比例函数关系式. 2. 能画出反比例函数的图象,根据图象和关系式 k y x 0k 探索并理解 k0 和 k0 时,图象的变化 情况. 通过具体的关系。
10、 1 专题专题 05 动点折叠类问题中函数及其综合题型动点折叠类问题中函数及其综合题型 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、 弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求 静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的 压轴部分,题型繁多,题意新颖,具有创新力.。
11、专题六二次函数综合题类型一 代数问题(2019安徽)一次函数ykx4与二次函数yax2c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0m4)且垂直于y轴的直线与二次函数yax2c的图象相交于B,C两点,点O为坐标原点,记WOA2BC2,求W关于m的函数解析式,并求W的最小值【分析】 (1)把(1,2)分别代入ykx4和yax2c,得k42和ac2,然后求出二次函数图象的顶点坐标为(0,4),可得c4,然后计算得到a的值;(2)由A(0,m)(0m4)可得OAm,令y2x24m,求出B,C坐标,进而表示出BC长度,将OA,BC代入WOA2BC2中得到W。
12、二次函数综合题(必考1道,9或12分)类型一与图形规律有关的探究问题(2019.23,2016.23,2014.24,2013.24)1. (2018江西样卷)已知抛物线Cn:ynx2(n1)x2n(其中n为正整数)与x轴交于An,Bn两点(点An在Bn的左边),与y轴交于点Dn.(1)填空:当n1时,点A1的坐标为_,点B1的坐标为_;当n2时,点A2的坐标为_,点B2的坐标为_;(2)猜想抛物线Cn是否经过某一个定点,若经过请写出该定点坐标并给予证明;若不经过,并说明理由;(3)判断A2D2B4的形状;猜想AnDnBn2的大小,并给予证明2. (2019南昌模拟)如图,抛物线C:yx2经过变换可得到抛物线C1:y1a1x(xb1。
13、专题14 函数的综合问题专题知识回顾 1.一次函数与二次函数的综合。2.一次函数与反比例函数的综合。3.二次函数与反比例函数的综合。4.一次函数、二次函数和反比例函数的综合。专题典型题考法及解析 【例题1】(2019黑龙江绥化)一次函数y1x+6与反比例函数y2(x0)的图象如图所示.当y1y2时,自变量x的取值范围是_.第18题图【例题2】(2019吉林长春)如图,在平面直角坐标系中,抛物线y=ax2-2ax+(a0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的中点,则的值为 【例题3】(2019广西省。
14、 专题专题 05 动点折叠类问题中函数及其综合题型动点折叠类问题中函数及其综合题型 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、 弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求 静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的 压轴部分,题型繁多,题意新颖,具有创新力. 。
15、 专题专题 05 动点折叠类问题中函数及其综合题型动点折叠类问题中函数及其综合题型 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、 弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求 静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的 压轴部分,题型繁多,题意新颖,具有创新力. 。
16、题型四 二次函数综合题类型一 与图形规律有关的探究问题1. 先阅读,再解决问题平面直角坐标系下,一组有规律的点:A1(0,1)、A 2(1,0)、A 3(2,1)、A 4(3,0)、A 5(4,1) 、A 6(5,0) ,注:当 n 为奇数时,A n(n1,1),n 为偶数时 An(n1,0) 抛物线 C1 经过 A1,A 2,A 3 三点,抛物线 C2 经过 A2,A 3,A 4 三点,抛物线 C3 经过 A3,A 4,A 5 三点,抛物线 C4 经过 A4,A 5,A 6 三点,此抛物线 Cn经过 An,A n1 ,A n2 .(1)直接写出抛物线 C1,C 4 的解析式;(2)若点 E(e,f 1),F( e,f 2)分别在抛物线 C27,C 28 上,当 e29 时,求。
17、二次函数综合题类型一 抛物线与直线的图象性质问题1.如图,抛物线 y=x2+2x-3 的图象与 x 轴交于点 A、B(A 在 B 左侧) ,与 y轴交于点 C,点 D 为抛物线的顶点(1)求ABC 的面积;(2)P 是对称轴左侧抛物线上一动点,以 AP 为斜边作等腰直角三角形,直角顶点 M 正好落在对称轴上,画出图形并求出 P 点坐标;(3)若抛物线上只有三个点到直线 CD 的距离为 m,求 m 的值第 1 题图 备用图解:(1)针对于抛物线 y=x2+2x-3,令 x=0,则 y=-3,C(0,-3) ,令 y=0,则 x2+2x-3=0,x=-3 或 x=1,A(-3,0) ,B(1,0) ,SABC= AB|yC|=6;2。
18、专题14 函数的综合问题专题知识回顾 1.一次函数与二次函数的综合。2.一次函数与反比例函数的综合。3.二次函数与反比例函数的综合。4.一次函数、二次函数和反比例函数的综合。专题典型题考法及解析 【例题1】(2019黑龙江绥化)一次函数y1x+6与反比例函数y2(x0)的图象如图所示.当y1y2时,自变量x的取值范围是_.第18题图【答案】2y2时,自变量x的取值范围是2x4.【例题2】(2019吉林长春)如图,在平面直角坐标系中,抛物线y=ax2-2ax+(a0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的。
19、专题八函数综合题类型一 一次函数与反比例函数综合题(2019粤西联考)已知,如图,一次函数ykxb(k,b为常数,k0)的图象与x轴、y轴分别交于A,B两点,且与反比例函数y(n为常数且n0)的图象在第二象限交于点C,CDx轴,垂足为D,若OB2OA3OD6.(1)求一次函数与反比例函数的表达式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kxb的解集【分析】 (1)先求出A,B,C坐标,再利用待定系数法确定函数表达式(2)两个函数的表达式作为方程组,解方程组即可解决问题(3)根据一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号【自主。
20、中考专题练习 函数综合题(基础)例1. 如图,已知,是一次函数与反比例函数图象的两个交点,轴于,轴于(1)根据图象直接回答:在第二象限内,当取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及的值;(3)是线段上的一点,连接,若和面积相等,求点坐标【解答】解:(1)由图象得一次函数图象在上的部分,当时,一次函数大于反比例函数的值;(2)设一次函数的解析式为,的图象过点,则,解得一次函数的解析式为,反比例函数图象过点,;(3)连接、,如图,设由和面积相等得,点坐标是,例2. 如图,反比例函数的图象与。