高中数学考点10变化率与导数、导数的计算1了解导数的概念与实际背景,理解导数的几何意义.2会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于习题课导数的应用学习目标1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与
导数各种题型方法总结Tag内容描述:
1、第二部分专题一题型一1(2019天水)已知ab,则代数式2a2b3的值是(B)A2B2C4D32已知(xy2)20,则x2y2_4_.3如图,在ABC中,A40,D是ABC和ACB平分线的交点,则BDC_110_.第3题图4如图,A,B,C两两不相交,且半径都是1,则图中三个扇形(即阴影部分)的面积之和为_.第4题图5已知方程a(2xa)x(1x)的两个实数根为x1,x2,设S.(1)当a2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由解:(1)当a2时,原方程化为x25x40,解得x14,x21,S213.(2)S,S2x1x22,a(2xa)x(1x)。
2、第二部分专题一题型二1一元二次方程x22x30的解是x11,x23.现给出另一个方程(2x3)22(2x3)30,它的解是(D)Ax11,x23Bx11,x23Cx11,x23Dx11,x232如图,点E在正方形ABCD的对角线AC上,且EC2AE,RtFEG的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(D)第2题图Aa2Ba2Ca2Da23已知ab0,且0,则_.第4题图4如图是一个三级台阶,它的每一级的长、宽、高分别为55,10和6,A和B是这个台阶的两个相对端点,A点有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线是_73_.5已知ABC的三边长分别为a,b,c,。
3、第二部分专题一题型三1(2019厦门一中模拟)在等腰三角形ABC中,A80,则B的度数为_20或50或80_.2(2019菏泽)如图,直线yx3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,1个单位长度为半径作P.当P与直线AB相切时,点P的坐标是_(,0)或(,0)_.第2题图3(2019绍兴)如图,在直线AP上方有一个正方形ABCD,PAD30,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连接ED,则ADE的度数为_15或45_.第3题图4(2019凉山)在ABCD中,E是AD上一点,且点E将AD分为23的两部分,连接BE,与AC相交。
4、第二部分专题一题型四1已知一次函数ykxb的图象与正比例函数y2x的图象相交于点B(m,2),则关于x的不等式kxb2x的解集为(B)第1题图Ax12在平面直角坐标系中,A(2,0),以点A为圆心,1为半径作A.若P(x,y)是A上任意一点,则的最大值为(D)A1BCD3(2019甘肃)如图是二次函数yax2bxc的图象,对于下列说法:ac0,2ab0,4acb2,abc0,当x0时,y随x的增大而减小,其中正确的是(C)ABCD第3题图4在RtABC中,BAC90,AB3,AC4,P为边BC上一动点,PEAB于点E,PFAC于点F.若M为EF的中点,则AM的最小值为_.第4题图5(2019重庆B卷)一天,小明从家出发匀速步行去学校。
5、3.2导数的应用最新考纲考情考向分析1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)3.会利用导数解决某些实际问题(生活中的优化问题).考查函数的单调性、极值、最值,利用函数的性质求参数范围;与方程、不等式等知识相结合命题,强化函数与方程思想、转化与化归思想、分类讨论思想的应用意。
6、第2课时导数与函数的极值、最值题型一用导数求解函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)答案D解析由题图可知,当x0;当22时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求已知函数的极值例2(2018通辽质检)已知函数f(x)x1(aR,e为自然对数的底数),求函数f(x)的。
7、1第十一章 三角形专题知识点+典型题型+难点题型第十一章 三角形专题知识点+典型题型+ 难点题型+详细答案 .111.1 与三角形有关的线段 .2知识框架 2一、基础知识点 2知识点 1 认识三角形 2知识点 2 三角形三边关系 4知识点 3 三角形的高、中线与角平分线 5知识点 4 三角形的稳定性 7二、典型题型 8题型 1 三角形三边关系(限定条件) 8题型 2 中线与三角形面积 8题型 3 高线与三角形面积 9三、难点题型 11题型 1 与三角形有关的线段 11题型 2 面积问题 等积变换 1211.2 与三角形有关的角 .15知识框架 15一、基础知识点 15知识点 1 三角形内。
8、第2课时导数与函数的极值、最值题型一用导数求解函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是_(填序号)函数f(x)有极大值f(2)和极小值f(1);函数f(x)有极大值f(2)和极小值f(1);函数f(x)有极大值f(2)和极小值f(2);函数f(x)有极大值f(2)和极小值f(2)答案解析由题图可知,当x0;当22时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求已知函数的极值例2设函数f(x)ln(x1)a(x2x),其中aR.讨论函数f(x)极值点的个数,。
9、第1讲 变化率与导数、导数的计算基础达标1函数yx2cos x在x1处的导数是()A0B2cos 1sin 1Ccos 1sin 1D1解析:选B.因为y(x2cos x)(x2)cos xx2(cos x)2xcos xx2sin x,所以y|x12cos 1sin 1.2(2019衢州高三月考)已知t为实数,f(x)(x24)(xt)且f(1)0,则t等于()A0B1CD2解析:选C.依题意得,f(x)2x(xt)(x24)3x22tx4,所以f(1)32t40,即t.3(2019温州模拟)已知函数f(x)x22x的图象在点A(x1,f(x1)与点B(x2,f(x2)(x1x20)处的切线互相垂直,则x2x1的最小值为()AB1CD2解析:选B.因为x1x20,f(x)x22x,所以f(x)2x2,所以函数f(x)在点A,B处。
10、1巧用法则求导数导数的计算包括八个基本初等函数的导数公式,以及和、差、积、商的导数运算法则,它们是导数概念的深化,也是导数应用的基础,起到承上启下的作用那么在掌握和、差、积、商的导数运算法则时,要注意哪些问题?有哪些方法技巧可以应用?下面就以实例进行说明1函数和(或差)的求导法则(f(x)g(x)f(x)g(x)例1求下列函数的导数:(1)f(x)ln x;(2)yx32x3.解(1)f(x).(2)y(x3)(2x)33x22.点评记住基本初等函数的导数公式是正确求解导数的关键,此外函数和(或差)的求导法则可以推广到任意有限个可导函数和(或差)的求导2函数积的求导法。
11、专题 07 导数有关的构造函数方法一知识点基本初等函数的导数公式(1)常用函数的导数(C)_( C 为常数); ( x)_;(x 2)_; _;(1x)( ) _x(2)初等函数的导数公式(x n)_; (sin x) _;(cos x)_; (e x)_;(a x)_; (ln x)_;(log ax)_5导数的运算法则(1)f(x)g(x) _;(2)f(x)g(x)_;(3) _f(x)g(x)6复合函数的导数(1)对于两个函数 yf(u)和 ug(x),如果通过变量 u,y 可以表示成 x 的函数,那么称。
12、专题 07 导数有关的构造函数方法一知识点基本初等函数的导数公式(1)常用函数的导数(C)_( C 为常数); ( x)_;(x 2)_; _;(1x)( ) _x(2)初等函数的导数公式(x n)_; (sin x) _;(cos x)_; (e x)_;(a x)_; (ln x)_; (log ax)_5导数的运算法则(1)f(x)g(x) _ _;(2)f(x)g(x)_;(3) _f(x)g(x)6复合函数的导数(1)对于两个函数 yf(u)和 ug(x),如果通过变量 u,y 可以表示成 x 的函数,那。
13、2020年高考文科数学导数的综合应用题型归纳与训练【题型归纳】题型一 含参数的分类讨论例1 已知函数,导函数为,(1)求函数的单调区间;(2)若在1,3上的最大值和最小值。【答案】略【解析】(I),(下面要解不等式,到了分类讨论的时机,分类标准是零)当单调递减; 当的变化如下表:+00+极大值极小值此时,单调递增, 在单调递减; (II)由 由(I)知,单调递增。【易错点】搞不清分类讨论的时机,分类讨论不彻底【思维点拨】分类讨论的难度是两个,(1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理,由于参数的存在,。
14、 2020年高考文科数学导数的定义与基础应用题型归纳与训练【题型归纳】题型一 对导数定义的理解与考查例1、如图,直线和圆,当从开始在平面上绕点O匀速旋转(旋转角度不超过90o)时,它扫过的圆内阴影部分的面积是时间的函数,它的图像大致是( )。【答案】D【解析】在直线旋转的过程中,可以发现面积的平均变化率是先增大后减小,但是始终都是正数,即面积是时间的增函数,且增幅是先快再慢。选D.【易错点】不能把实际问题与导数的定义联系起来【思维点拨】深刻理解导数的定义-导数反映函数在点处变化的快慢程度.理解导数的几何意义,即。
15、 2020年高考理科数学导数的定义与基础应用题型归纳与训练【题型归纳】题型一 对导数定义的理解与考查例1、如图,直线和圆,当从开始在平面上绕点O匀速旋转(旋转角度不超过90o)时,它扫过的圆内阴影部分的面积是时间的函数,它的图像大致是( )。【答案】D【解析】在直线旋转的过程中,可以发现面积的平均变化率是先增大后减小,但是始终都是正数,即面积是时间的增函数,且增幅是先快再慢。选D.【易错点】不能把实际问题与导数的定义联系起来【思维点拨】深刻理解导数的定义-导数反映函数在点处变化的快慢程度.理解导数的几何意义,即。
16、 2020年高考理科数学导数的综合应用题型归纳与训练【题型归纳】题型一 含参数的分类讨论例1 已知函数,导函数为,(1)求函数的单调区间;(2)若在1,3上的最大值和最小值。【答案】略【解析】(I),(下面要解不等式,到了分类讨论的时机,分类标准是零)当单调递减; 当的变化如下表:+00+极大值极小值此时,单调递增, 在单调递减; (II)由 由(I)知,单调递增。【易错点】搞不清分类讨论的时机,分类讨论不彻底【思维点拨】分类讨论的难度是两个,(1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理,由于参数的存在。
17、习题课导数的应用学习目标1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用知识点一函数的单调性与其导数的关系定义在区间(a,b)内的函数yf(x)f(x)的正负f(x)的单调性f(x)0单调递增f(x)0,右侧f(x)0,那么f(x0)是极小值知识点三函数yf(x)在a,b上最大值与最小值的求法1求函数yf(x)在(a,b)内的极值2将函数yf(x)的极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值1函数yxln x在上是减函数()2若函数yaxln x在内单调递增,则a的取值范围为(2,。
18、高中数学考点10 变化率与导数、导数的计算1了解导数的概念与实际背景,理解导数的几何意义.2会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+b)的导数).一、导数的概念1平均变化率函数从到的平均变化率为,若,则平均变化率可表示为.2瞬时速度一般地,如果物体的运动规律可以用函数来描述,那么,物体在时刻的瞬时速度v就是物体在到这段时间内,当无限趋近于0时,无限趋近的常数.3瞬时变化率定义式实质瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值作用刻画函数在某一。