第第 17 讲讲 计算综合一计算综合一 内容概述 了解等比数列的基本概念,学会利用错位相减的方法进行求和;灵活使用各种方法简化比较复杂的分数算 式;具有一定综合性的“定义新运算”问题;较复杂的数列与数表问题。 典型问题 兴趣篇兴趣篇 1.计算: (1)1248163264128256; (2) 11
导引 盈亏Tag内容描述:
1、第第 17 讲讲 计算综合一计算综合一 内容概述 了解等比数列的基本概念,学会利用错位相减的方法进行求和;灵活使用各种方法简化比较复杂的分数算 式;具有一定综合性的“定义新运算”问题;较复杂的数列与数表问题。
典型问题 兴趣篇兴趣篇 1.计算: (1)1248163264128256; (2) 11111111 1 248163264128256 。
2.计算: 23456 33333 。
2、第第 11 讲讲 约数与倍数约数与倍数 内容概述 掌握约数与倍数的概念,学会约数个数与约数和的计算方法;掌握最大公约数、最小公倍数的常用计算方 法;能够利用最大公约数和最小公倍数的性质解决相关的整数问题。
典型问题 兴趣篇兴趣篇 1.(1)请写出 105 的所有约数; (2)请写出 72 的所有约数。
2.(1)20000 的约数有多少个?(2)720 的约数有多少个? 3.计算: (1)。
3、第第 19 讲讲 工程问题工程问题 内容概述 掌握工作总量、工作效率、工作时间的基本概念和关系;理解“单位 1”的概念并灵活应用;熟悉多人、多工 程、效率变化等各种形式的问题;学会处理“水池注水”形式的问题。
典型问题 兴趣篇兴趣篇 1.甲、乙两辆车运一堆煤,如果只用甲车运,15 小时可以运完;如果只用乙车运,10 小时可以运完。
请问: (1)如果两车一起运,多少小时可以运完? (2)如果甲车从早。
4、第第 10 讲:讲:几何计数几何计数 内容概述内容概述 合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方 格表中长方形个数的计算方法;注意利用图形的对称性来简化计算。
典型问题典型问题 兴趣篇兴趣篇 1.如图 10-1,线段ABBCCDDE、的长度都是 3 厘米。
请问:图中一共有多少条线段?这些线段的长度 之和是多少厘米? 2.小明把巧克力棒摆成了。
5、第第 21 讲讲 数数字字问题问题 内容概述内容概述 各种与数字有关的数字谜问题。
学会位值原理的分析方法;综合应用已学的数字谜技巧和数论知识。
兴趣篇兴趣篇 1.一个两位等于它的数字和的 6 倍,求这个两位数。
2.今年是 2008 年,小王说:“我的年龄正好与我出生那年年份的四个数字之和相同”。
请问:小王今年多大? 3.用 3 个不同的数字组成 6 个不同的三位数,这 6 个三位数的和是。
6、第第 12 讲讲 余数余数 内容概述:内容概述: 掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法。
学会利用余数的可加性、可减 性和可乘性计算余数;学会运用周期性处理各类余数计算问题;学会求解“物不知数”问题。
典型问题 兴趣篇兴趣篇 1. 72 除以一个数,余数是除以一个数,余数是 商可能是多少?。
商可能是多少? 2. 100 和和 84 除以同一个数,得到的余数相同,但余数。
7、第第 2 讲讲 数的整除数的整除 内容概述: 掌握整除的概念和基本性质,掌握能被某些特殊数整除的数的特征。
通过分析整除特征解决数的补填 问题,以及多位数的构成问题等。
典型问题: 兴趣篇兴趣篇 1.下面有 9 个自然数:14,35,80,152,650,434,4375,9064,2412在这些自然数中,请问: (1)有哪些数能被 2 整除?哪些能被 4 整除?哪些能被 8 整除? (2)有哪。
8、六年级奥数精品讲义及常考易错题汇编六年级奥数精品讲义及常考易错题汇编-典型应用题典型应用题-盈亏问题盈亏问题 【知识点归纳】 把若干物体平均分给一定数量的对象,并不是每次都能正好分完如果物体还有剩余,就叫盈; 如果物体不够分,少了,叫亏凡是研究盈和亏这一类算法的应用题就叫盈亏问题 解盈亏问题的公式 一盈一亏的解法:(盈数+亏数)两次每人分配数的差 双盈的解法:(大盈-小盈)两次每人分配数的差 双亏。
9、某地区烛光晚餐中,设座位有 x 排,每排坐 30人,则有 8 人无座位;每排坐 31 人,则空 26 个座位,则下列方程正确的是( )A30x831x26 B30x 831x26C30x 831 x26 D30x 831x264某班同学去划船,若每船坐 7 人,则余下 5 人没有座位;若每船坐 8 人,则又空出2 个座位这个班参加划船的同学人数和船数分别是( )A47,6 B46,6 C54 ,7 D61,852017南京联合体二模某小组计划做一批中国结,如果每人做 6 个,那么比计划多做了 9 个;如果每人做 4 个,那么比计划少做了 7 个设计划做 x 个中国结,可列方程_6小明根据方程 5x26x 8 编写了一道应用题,请你把空缺的部分补充完整:某手工小组计划教师节前做一批手工品送给老师,如果每人做 5 个,那么就比计划少 2 个;_。
10、215;22+56 33+5644 (2) 22233+88966.3. 计算:(1) 3747+36 53 (2) 12376124 74. 计算:10099+9897+9695+ +1211+10.5. 计算:50+494847+46+454443+43+2+1.6. 计算:(1+3+5+7+199+201) (2+4+6+8+198+200).7. 计算:1+2+3+4+48+49+50+49+48+4+3+2+1.8. 下面是一个叫做“七上八下”的数字游戏。
游戏规则是:对一个给定的数,按照由若干个 7 和 8 组成的口令进行一连串的变换。
口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是指将这个数中的一个数字去掉,也要使新生成的数尽量大。
例如:给出的数是 1995,口令是“87, ”在第一个口令“8”发出后变成 995,在第二个口令“7”发出后变成 999如果给出数“6595”以及口令“87878。
11、如果每 人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题 叫做“盈亏问题”。
可以得出盈亏问题的基本关系式: (盈+亏) 两次分得之差=人数或单位数 (盈盈) 两次分得之差=人数或单位数 (亏亏) 两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两 个数的差求未知数的“盈亏问题”。
二、方法技巧二、方法技巧 注意 1.条件转换 2.关系互换 考点一:直接计算型盈亏问题考点一:直接计算型盈亏问题 知识梳理 典例分析 教学目标 例 1、三年级一班少先队员参加学校搬砖劳动如果每人搬 4 块砖,还剩 7 块;如果每人搬 5 块,则 少 2 块砖这个班少先队有几个人?要搬的砖共有多少块? 【解析】比较两种搬砖法中各个量之间的关系:每人搬 4 块,还剩 7 块砖;每人搬 5 块,就少 2 块这两 次 搬砖,每人相差 5-4=1(块)。
第一种余 7 块,第二种少 2 块,那么第二次与第一次总共相差砖数:7+2=9 (块),每人相。
12、第七讲 简单盈亏问题 学习目标学习目标 内容概述内容概述 1.幼儿园老师给小朋友分饼干,如果每人分 3 块,多了 31 块,如果每人分 5 块,少了 15 块,问小朋友有多少人饼干有多少块 解析分饼干,每人分 3 块多出 31 块,每人分 。
13、你知道它们的意思吗?,3. 某商品原来每件零售价是 a 元,现在每件降价10%,降价后每件零售价是 元.,4. 某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元.,1. 商品原价200元,九折出售,售价是 元.,5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元.,2. 商品进价是150元,售价是180元,则利润是元,利润率是_.,讲授新课,180,30,20,0.9a,1.25a,16,合作探究,以上问题中有哪些量?,成本价(进价);,标价 (原价);,销售价;,利润;盈利;亏损;,利润率.,商品利润,利润率=,= 商品售价商品进价,售价、进价、利润的关系:,商品利润,进价、利润、利润率的关系:,商品进价,100%,折扣数,标价、折扣数、商品售价的关系:,商品售价,标价,10,商品售价、进价、利润率的关系:,商品进价,商品售价=,(1+利润率),销 售 中 的 盈 亏,要点归纳,你估计盈亏情况是怎样的? A. 盈利 B. 亏损 C。
14、量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不 足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。
可以得出盈亏问题的基本关系式: (盈+亏)两次分得之差=人数或单位数 (盈盈)两次分得之差=人数或单位数 (亏亏)两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况, 都是属于按两个数的差求未知数的“盈亏问题”。
二、方法技巧二、方法技巧 注意 1.条件转换 2.关系互换 考点一:直接计算型盈亏问题考点一:直接计算型盈亏问题 例例 1 1、三年级一班少先队员参加学校搬砖劳动如果每人搬 4 块砖,还剩 7 块;如果每人搬 5 块,则 少 2 块砖这个班少先队有几个人?要搬的砖共有多少块? 【解析】比较两种搬砖法中各个量之间的关系:每人搬 4 块,还剩 7 块砖;每人搬 5 块,就少 2 块这两 次搬砖,每人相差 5-4=1(块)。
第一种余 7 块,第二种少 2 块,那么第二次与第 教学目标 知识梳理 典例分析 一次总共相差砖数: 7+2=。
15、牛板筋、 3 袋酱牛肉, 就会缺 4 元钱 请 问共有多少人? 例题 1 第第九九讲讲 复杂盈亏问题复杂盈亏问题 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 虽然很多盈亏问题可以通过条件的简单转化, 变为基本盈亏问题来解决, 但学习盈亏问题的重点不 在于那几种套路,而是要学会如何去“比较”,比较前后两种情形的“差额”只有通过盈亏问题学会 如何去“比较”,才是学到了真本事 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 。
16、归纳总结教学目标 了解盈亏问题是什么,能够分辨出是属于盈亏问题类型 掌握盈亏问题的几种基本情况,以及基本的解题方法 熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、基本方法 盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。
可以得出盈亏问题的基本关系式: (盈+亏)两次分得之差=人数或单位数 (盈盈)两次分得之差=人数或单位数 (亏亏)两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。
二、方法技巧 注意1.条件转换 2.关。
17、归纳总结教学目标 了解盈亏问题是什么,能够分辨出是属于盈亏问题类型 掌握盈亏问题的几种基本情况,以及基本的解题方法 熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、基本方法 盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。
可以得出盈亏问题的基本关系式: (盈+亏)两次分得之差=人数或单位数 (盈盈)两次分得之差=人数或单位数 (亏亏)两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。
二、方法技巧 注意1.条件转换 2。
18、练S归纳总结教学目标 了解盈亏问题是什么,能够分辨出是属于盈亏问题类型 掌握盈亏问题的几种基本情况,以及基本的解题方法 熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、基本方法 盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。
可以得出盈亏问题的基本关系式: (盈+亏)两次分得之差=人数或单位数 (盈盈)两次分得之差=人数或单位数 (亏亏)两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。
二、方法技巧 注意1.条件转换。
19、 第第 23 讲讲 盈亏问题二盈亏问题二 兴趣篇兴趣篇 1、 新学期开始了,妈妈给了旺仔一些钱,让他去买作业本。
旺仔开始买了几个本子,还剩下 10 元钱。
然 后他想再买 3 个本子,结果发现缺 2 元钱。
每个作业本的价钱是多少元钱? 2、 工会给大家发牛奶,每人发 5 袋,结果还缺 3 袋。
如果还要再给 2 个人发,那么一共会缺多少袋牛奶? 如果最后发现一共缺少 23 袋牛奶,那么比开始增加了几。
20、 第第 15 讲讲盈亏问题一盈亏问题一 兴趣篇兴趣篇 1、老师给同学们发作业本,每人发了同样多的作业本后,还剩下 20 本。
后来给新来的 2 个人也发了同样 数目的作业本,就只剩下 12 本了。
请问:每个人发了基本?剩下的作业本还能再发给几个人? 2、老师把一堆苹果分给小朋友,每人分的同样多。
如果分给 9 个人,那么还剩下 21 个苹果;如果分给 12 个人,就只剩下 12 个苹果。
请问:这堆。