欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

导引 最值

)值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。3. 判别式法根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得出y的最值。4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。5. 利用

导引 最值Tag内容描述:

1、值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得出y的最值。
4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质在实数范围内,显然有,当且仅当时,等号成立,即的最小值为k。
6. 零点区间讨论法用“零点区间讨论法”消去函数y中绝对值符号,然后求出y在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解在不等式中,是最大值,在不等式中,是最小值。
8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
专题典型题考法及解析 【例题1】(经典题)二次函数y=2(x3)24的最小值为 【例题2】(2018江西)如图,AB是O的弦,AB=5,点C是O上的一个动点,且。

2、D在AB的同侧,AC2,BD8,AB8.点M为AB的中点.若CMD120 ,则 CD的最大值是. 【答案】【答案】14 【解析】【解析】 将 CAM 沿 CM 翻折到 CAM, 将 DBM 沿 DM 翻折至 DBM, 则 AMBM, AMCAMC, DMBDMB,CMD120 ,AMC+DMBAMC+DMB60 , AMB180 -(AMC+DMB+AMC+DMB)60 , AMB是等边三角形, 又又AC2,BD8,AB8.点 M 为 AB 的中点, ABAMBMAM 1 2 AB4, CAAC2, DBDB8, 又 CDCA+AB+DB2+4+814. 三、解答题三、解答题 24 (2019 山东威海,山东威海,24,12 分)分)如图,在正方形 ABCD 中,AB10cm,E 为对角线 BD 上一动点,连接 AE, CE,过 E 点作 EFAE,交直线 BC。

3、分成多少组?这时,人数最少的那组有多少人?3有 11 个同学计划组织一场围棋比赛,他们准备分为两组,每组进行单循环比赛,那么他们最少需要比赛多少场?4我们知道,很多自然数可以表示成两个不同质数的和,例如 8 = 3 + 5有的数有几种不同的表示方法,例如 100 = 3 + 97 =11 + 89 =17 + 83.请问:恰好有两种表示方法的最小数是多少?5一个三位数除以它的各位数字之和,商最大是多少?商最小是多少?6(1)在分母是一位数的最简真分数中,两个不相等的分数最小相差多少?(2)从 1 至 9 中选取四个不同的数字填人算式 中,使算式的结果小于 1这个结果最 大是多少?7如图 16-1,等腰直角三角形 ABC 中,CA = CB = 4 厘米,在其中作一个矩形 CDEF,矩形 CDEF 的面积最大可能是多少?8如图 16-2,从一个长方形的两个角上挖去两个小长方形后得到一个八边形,这个八边形的边长恰好为 1、2、3、4、5、6、7、8 这 8 个数,它的面积最大可能是多少?9在 44 的方格表中将一些方格染成黑色,使得任意两个黑格都没有公共顶。

4、 1 【类型综述】 线段和差的最值问题,常见的有两类: 第一类问题是“两点之间,线段最短” 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是 “两点之间,线段最短”结合“垂线段最短” 【方法揭秘】 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球。

5、示数的字母,最后整理、变形,根据要求写出定义域关 键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错 【方法揭秘】 由勾股定理产生的函数关系,在两种类型的题目中比较常用 类型一,已知“边角边”,至少一边是动态的,求角的对边如图 1,已知点 A 的坐标为(3, 4),点 B 是 x 轴 正半轴上的一个动点,设 OBx,ABy,那么我们在直角三角形 ABH 中用勾股定理,就可以得到 y 关于 x 的函数关系式 类型二,图形的翻折已知矩形 OABC 在坐标平面内如图 2 所示,AB5,点 O 沿直线 EF 翻折后,点 O 的对应点 D 落在 AB 边上,设 ADx,OEy,那么在直角三角形 AED 中用勾股定理就可以得到 y 关于 x 的函数关系式 图 1 图 2 【典例分析】 例 1 如图 1,在 RtABC 中,BAC90 ,B60 ,BC16cm,AD 是斜边 BC 上的高,垂足为 D,BE 1cm,点 M 从点 B 出发沿 BC 方向以 1cm/s 的速度运动,点 N 从点 E 出发,与点 。

6、次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.【典例指引】类型一 角的最值问题例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【解析】类型二 距离的最值问题例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值【解析】类型三 几何图形的面积的范围问题例3【2016高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于。

7、同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有(  )A4 个    B5 个    C6 个    D7 个3跳台滑雪是冬季奥运会比赛项目之一运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度 (单位: )与水平距离 (单位: )近似满足函数关系 ( ) 下图记录了某运动员起跳后的 与 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A     B     C     D 4如图,平面直角坐标系中,P 经过三点 A(8,0 ) ,O(0 ,0) ,B(0,6) ,点 D 是P 上的一动点当点 D 到弦 OB 的距离最大时,tan BOD 的值是(  )A2     B3 &。

8、或“光的两次反射”问题,关键是指出两条对称轴“反射镜面” (如图 2) 两条线段差的最大 值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长如图 3,PA 与 PB 的差的最大值就是 AB,此时点 P 在 AB 的延长线上,即 P解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题图 1 图 2 图 3如图 4,正方形 ABCD 的边长为 4,AE 平分BAC 交 BC 于 E点 P 在 AE 上,点 Q 在 AB 上,那么BPQ周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE 是河流,但是点 Q 不确定啊第一步,应用“两点之间,线段最短”如图 5,设点 B 关于“河流 AE”的对称点为 F,那么此刻 PFPQ 的最小值是线段 FQ第二步,应用“垂线段最短” 如图 6,在点 Q 运动过程中,FQ 的最小值是垂线段 FH这样,因为点 B 和河流是确定的,所以点 F 是确定的,于是垂线段 FH 也是确定的图 4 。

9、理、变形,根据要求写出定义域关 键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错 【方法揭秘】 由勾股定理产生的函数关系,在两种类型的题目中比较常用 类型一,已知“边角边”,至少一边是动态的,求角的对边如图 1,已知点 A 的坐标为(3, 4),点 B 是 x 轴 正半轴上的一个动点,设 OBx,ABy,那么我们在直角三角形 ABH 中用勾股定理,就可以得到 y 关于 x 的函数关系式 类型二,图形的翻折已知矩形 OABC 在坐标平面内如图 2 所示,AB5,点 O 沿直线 EF 翻折后,点 O 的对应点 D 落在 AB 边上,设 ADx,OEy, 那么在直角三角形 AED 中用勾股定理就可以得到 y 关于 x 的函数关系式 图 1 图 2 【典例分析】 例 1 如图 1,在 RtABC 中,BAC90 ,B60 ,BC16cm,AD 是斜边 BC 上的高,垂足为 D,BE 1cm,点 M 从点 B 出发沿 BC 方向以 1cm/s 的速度运动,点 N 从点 E 出发,与点 M 同时同方向以。

10、次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.学科网【典例指引】类型一 角的最值问题例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【解析】(I)由题意知 ,所以 ,因此 椭圆的方程为.()设,联立方程得,由题意知,且,所以 .由题意可知圆的半径为由题设知,所以因此直线的方程为.因此 ,当且仅当,即时等号成立,此时,所以 ,因此,所以 最大值为.综上所述:的最大值为,取得最大值时直线的斜率为.类型二 距离的最值问题例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值。

11、次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.【典例指引】类型一 角的最值问题例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【解析】类型二 距离的最值问题例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值【解析】类型三 几何图形的面积的范围问题例3【2016高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于。

12、或“光的两次反射”问题,关键是指出两条对称轴“反射镜面” (如图 2) 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长如图 3,PA 与 PB 的差的最大值就是 AB,此时点 P 在 AB 的延长线上,即 P解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题图 1 图 2 图 3如图 4,正方形 ABCD 的边 长为 4,AE 平分BAC 交 BC 于 E点 P 在 AE 上,点 Q 在 AB 上,那么BPQ周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE 是河流,但是点 Q 不确定啊第一步,应用“两点之间,线段最短”如图 5,设点 B 关于“河流 AE”的对称点为 F,那么此刻 PFPQ 的最小值是线段 FQ第二步,应用“垂线段最短” 如图 6,在点 Q 运动过程中,FQ 的最小值是垂线段 FH这样,因为点 B 和河流是确定的,所以点 F 是确定的,于是垂线段 FH 也是确定的图 4 。

13、次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.学【典例指引】类型一 角的最值问题例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.()求椭圆的方程;()如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【解析】(I)由题意知 ,所以 ,因此 椭圆的方程为.()设,联立方程得,由题意知,且,所以 .由题意可知圆的半径为由题设知,所以因此直线的方程为.因此 ,当且仅当,即时等号成立,此时,所以 ,因此,所以 最大值为.综上所述:的最大值为,取得最大值时直线的斜率为.类型二 距离的最值问题例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值。

14、1 单调性与最值单调性与最值 课时分层作业课时分层作业 建议用时:60 分钟 合格基础练 一选择题 1下列函数中,周期为 ,且在4,2上为减函数的是 Aysin2x2 Bycos2x2 Cysinx2 Dycosx2 A 对于选项 A,注意。

15、D 对折后再展开,得到折痕EF,M 是 BC 上一点,沿着 AM 再次折叠纸片,使得点 B 恰好落在折痕 EF 上的点 B处,连接 AB,BB判断AB B 的形状为 ;若 P 为线段 EF 上一动点 ,当 PB+PM 最小时,请描述点 P 的位置为 解:等边三角形; 与 的交点EFA三、解答题3.(2018 北京通州区一模)MBFEDBACFEDABC MBFEDBAC答案:4. (2018 北京房山区一模) 抛物线 分 别交 x 轴于点 A( 1,0) ,23yaxb=+-C(3,0) ,交 y 轴于点 B,抛物线的对称轴与 x 轴相交于点 D. 点 P 为线段 OB 上的点,点 E 为线段 AB 上的点,且 PE AB.(1)求抛物线的表达式;(2)计算 的值;PEPB(3)请直接写出 的最小值为 .12PB+PD解:(1)抛物线经过点 A( 1,0) ,C(3,0) , 1 分93ab。

16、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。

17、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。

18、1. 函数 y = ax2+ bx + c ( a 0 )图象与 x 轴交于点 (2,0) ,顶点坐标为 ( 1,n) , 其中 n 0 ,以下结论正确的是() 。
abc 0 ; 函数 y = ax2+ bx + c ( a 0 )在 x = 1 , x = 2 处的函数值相等; 函数 y = kx + 1 的图象与 y = ax2+ bx + c ( a 0 )的函数图象总有两个不同的交点; 。

19、位) ,可以组成最小的数,如果要知道一共可以组成几个数,那就将几个数字依次排在最高位,然后确定其余各位上是什么数字。
【例题 1】中最大能填几?(1)928 99 (2)372 32 (3)765 48思路导航:根据数的大小比较方法,先找出符合条件的数,再找出其中最大的数。
(1)928 与 99 的百位数相同,十位上大的那个数就大。
928 的十位上是 2,要使 28 大于9 ,中最大只能填 (2)372 与 32 的百位和个位数字相同,只要 7 就行,7 0,1、2、3、4、5、6,其中最大的是 6,所以中最大填 (3)765 与48 ,因为 65 48,所以中的数只要不大于 7 都行,中最大填 解: (1)1 (2)6 (3)7练习 11. 里最大能填几?(1)4132 433 (2)588 582.在 里最大能填几? (1)931 91 (2)45 462(3)13 136 (4)99 10003.在 里最大能填几? (1)209 2099 (2)347 。

20、第第 23 讲讲 最值问题一最值问题一 兴趣篇兴趣篇 1、3 个连续奇数相乘,所得乘积的个位数字最小可能是多少? 2、用 1、2、4 可以组成 6 个没有重复数字的三位数,这些三位数中相差最小的两个数之差是多少? 3、用 24 根长 1 厘米的火柴棒围成一个矩形,这个矩形的面积最大是多少?如果用 22 根火柴棒呢? 4、三个自然数的和是 19,它们的乘积最大可能是多少? 5、 (1)请将 。

【导引 最值】相关DOC文档
2020年中考数学必考专题33最值问题(原创版)
知识点48几何最值2019中考真题分类汇编
六年级高斯学校竞赛最值问题二含答案
中考数学压轴专练专题10 二次函数与线段关系及最值定值问题 (教师版)
2019年中考数学冲刺专题: 最值问题(含解析)
专题10 几何中的最值与定值问题-2019届突破中考数学压轴题讲义(原卷版)
中考数学压轴专练专题10 二次函数与线段关系及最值定值问题 (学生版)
专题10 几何中的最值与定值问题-2019届突破中考数学压轴题讲义(解析版)
5.4.3单调性与最值 课时分层作业(含答案)
2019年北京中考数学习题精选:最值类问题
初三数学讲义直升班 第9讲 二次函数的线段最值和面积最值(教师版)
第32讲 浅谈最值
奥数导引小学四年级含详解答案 第23讲:最值问题一
【导引 最值】相关PDF文档
二次函数最值简单
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开