欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

等比数列(一)课时作业(含答案)

9.3等比数列(三)基础过关1设数列(1)n的前n项和为Sn,则Sn等于()A.B.C.D.答案D解析Sn.2设等比数列an的前n项和为S9.3等比数列(四)基础过关1在14与之间插入n个数组成等比数列,如果各项总和为,那么此数列的项数为()A4B5C6D7答案B解析依题意知q9.3等比数列(一)基

等比数列(一)课时作业(含答案)Tag内容描述:

1、12.2空间中的平行关系第1课时平行直线一、选择题1空间两条互相平行的直线指的是()A在空间没有公共点的两条直线B分别在两个平面内的两条直线C在两个不同的平面内且没有公共点的两条直线D在同一平面内且没有公共点的两条直线答案D2已知ABPQ,BCQR,若ABC30,则PQR等于()A30 B30或150C150 D以上结论都不对答案B解析由等角定理可知PQR与ABC相等或互补,故答案为B.3分别和两条异面直线平行的两条直线的位置关系是()A一定平行 B一定相交C一定异面 D相交或异面答案D4若AOBA1O1B1,且OAO1A1,OA与O1A1的方向相同,则下列结论中正确的是()AOBO1B1且。

2、第2课时直线与平面平行一、选择题1若直线a,b是异面直线,a,则b与平面的位置关系是()A平行 B相交Cb D平行或相交答案D解析a,b异面,且a,b,b与平行或相交2.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH平面SCD,则()AGHSABGHSDCGHSCD以上均有可能答案B解析因为GH平面SCD,GH平面SBD,平面SBD平面SCDSD,所以GHSD,显然GH与SA,SC均不平行,故选B.3.P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:OMPD;OM平面PCD;OM平面PDA;OM平面PBA;OM平面PBC.其中正确的个数为()A1 B2 C3 D4答案C解。

3、第2课时平面与平面垂直基础过关1空间四边形ABCD中,若ADBC,BDAD,那么有()A平面ABC平面ADCB平面ABC平面ADBC平面ABC平面DBCD平面ADC平面DBC答案D解析平面ADC平面DBC.2.已知PA矩形ABCD所在的平面(如图)图中互相垂直的平面有()A1对 B2对C3对 D5对答案D解析DAAB,DAPA,ABPAA,DA平面PAB.BC平面PAB.又易知AB平面PAD,DC平面PAD.平面PAD平面ABCD,平面PAD平面PAB,平面PBC平面PAB,平面PAB平面ABCD,平面PDC平面PAD,共5对3设平面平面,在平面内的一条直线a垂直于平面内的一条直线b,则()A直线a必垂直于平面B直线b必垂直于平面C直线a不一定垂。

4、62.3垂直关系第1课时直线与平面的垂直基础过关1已知直线m,n是异面直线,则过直线n且与直线m垂直的平面()A有且只有一个 B至多一个C有一个或无数个 D不存在答案B解析若异面直线m,n垂直,则符合要求的平面有一个,否则不存在2如图所示,PO平面ABC,BOAC,在图中与AC垂直的线段有()A1条 B2条C3条 D4条答案D解析PO平面ABC,POAC,又ACBO,AC平面PBD,平面PBD中的4条线段PB,PD,PO,BD与AC垂直3空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A垂直且相交 B相交但不一定垂直C垂直但不相交 D不垂直也不相交答案C解析取BD中点O,连。

5、62.2平行关系第1课时直线与平面平行基础过关1直线l是平面外的一条直线,下列条件中可推出l的是()Al与内的一条直线不相交Bl与内的两条直线不相交Cl与内的无数条直线不相交Dl与内的任意一条直线不相交答案D解析由线面平行的定义可知D正确2下列命题中正确的个数是()ab,ba;a,bab;ab,ab;a,bab.A0 B1 C2 D3答案A解析中还可能有a,中a,b还可能异面,中还可能b,中还可能a和b相交、异面3有以下三个命题:一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;过直线外一点,有且只有一个平面和已知直线平行;如果直线l平面,那。

6、第2课时平面与平面平行基础过关1a,b,则a与b位置关系是()A平行 B异面C相交 D平行或异面或相交答案D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交2下列说法中正确的是()A如果两个平面,只有一条公共直线a,就说平面,相交,并记作aB两平面,有一个公共点A,就说,相交于过A点的任意一条直线C两平面,有一个公共点A,就说,相交于A点,并记作AD两平面ABC与DBC相交于线段BC答案A解析B不正确,若A,则,相交于过A点的一条直线;同理C不正确;D不正确,两个平面相交,其交线为直线而非线段3平面内有不共线的三点到平面的距离。

7、第2课时圆与圆的位置关系一、选择题1.圆(x3)2(y2)21与圆x2y214x2y140的位置关系是()A.外切 B.内切 C.相交 D.相离考点圆与圆的位置关系题点判断两圆的位置关系答案B解析圆x2y214x2y140变形为(x7)2(y1)236,圆心坐标为(7,1),半径为r16,圆(x3)2(y2)21的圆心坐标为(3,2),半径为r21,所以圆心距d561r1r2,所以两圆内切.2.圆x2y21与圆x2y22x2y10的交点坐标为()A.(1,0)和(0,1) B.(1,0)和(0,1)C.(1,0)和(0,1) D.(1,0)和(0,1)答案C解析由解得或所以两圆的交点坐标为(1,0)和(0,1).3.圆x2y24与圆(x4)2(y7)21公切线的条数为()A.1 B.2 C.3 D.4考。

8、第2课时点到直线的距离公式一、选择题1.点(1,1)到直线y1的距离是()A. B.C.3 D.2考点点到直线的距离题点求点到直线的距离答案D解析d2,故选D.2.原点到直线x2y50的距离为()A.1 B. C.2 D.答案D解析d.3.已知直线l1:xy10,l2:xy10,则l1与l2之间的距离为()A.1 B. C. D.2答案B解析d.4.已知直线3xmy30与6x4y10互相平行,则它们之间的距离是()A.4 B. C. D.答案D解析3xmy30与6x4y10平行,m2,化6x4y10为3x2y0,d.5.已知点M(1,4)到直线l:mxy10的距离为3,则实数m等于()A.0 B. C.3 D.0或答案D解析点M到直线的距离d3,m0或.6.两平行直线分别经过点。

9、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系一、选择题1.直线3x4y250与圆x2y29的位置关系为()A.相切 B.相交C.相离 D.相离或相切考点直线与圆的位置关系题点判断直线与圆的位置关系答案C2.若直线3x4ym0与圆x2y22x4y10没有公共点,则实数m的取值范围是()A.515C.m13 D.42,m15.故选B.3.已知圆x2y29的弦过点P(1,2),当弦长最短时,该弦所在直线的方程为()A.y20 B.x2y50C.2xy0 D.x10答案B解析当弦。

10、1.2直线的方程第1课时直线方程的点斜式一、选择题1.已知直线的方程是y2x1,则()A.直线经过点(1,2),斜率为1B.直线经过点(2,1),斜率为1C.直线经过点(1,2),斜率为1D.直线经过点(2,1),斜率为1答案C解析由y2x1,得y2(x1),所以直线的斜率为1,过点(1,2).2.已知直线的斜率是2,且在y轴上的截距是3,则此直线的方程是()A.y2x3 B.y2x3C.y2x3 D.y2x3考点直线的斜截式方程题点写出直线的斜截式方程答案A3.直线3x2y60的斜率为k,在y轴上的截距为b,则有()A.k,b3 B.k,b2C.k,b3 D.k,b3答案C解析由3x2y60,得yx3,则k,b3.4.与直线yx的斜率。

11、1.5平面直角坐标系中的距离公式第1课时两点间的距离公式一、选择题1.已知A(1,0),B(5,6),C(3,4)三点,则的值为()A. B. C.3 D.2考点两点间的距离公式题点求两点间的距离答案D解析由两点间的距离公式,得|AC|4,|CB|2,故2.2.已知两直线l1:xy20,l2:2xy10相交于点P,则点P到原点的距离为()A. B.5 C. D.2考点两点间的距离公式题点求两点间的距离答案C解析由得点P的坐标为(1,1),故到原点的距离为.3.光线从点A(3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是()A.5 B.2C.5 D.10考点对称问题的求法题点光路可逆问题答案C解析点。

12、72.4直线的斜率第1课时倾斜角与斜率基础过关1下列说法中,正确的是()A直线的倾斜角为,则此直线的斜率为tan B直线的斜率为tan ,则此直线的倾斜角为C若直线的倾斜角为,则sin 0D任意直线都有倾斜角,且90时,斜率为tan 答案D解析对于A,当90时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan ,但只有0180时,才是此直线的倾斜角,故不正确;对于C,当直线平行于x轴时,0,sin 0,故C不正确,故选D.2若A,B两点的横坐标相等,则直线AB的倾斜角和斜率分别是()A45,1 B135,1C90,不存在 D180,不存在答案C解析由于A,B两点的横。

13、第2课时系统抽样基础过关1.下列抽样试验中,最适宜用系统抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本.C.从参加考试的1 200名考生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解情况解析A项中总体容量、样本容量都较小,可用抽签法或随机数法;B项中总体含有差异明显的几部分,不宜用系统抽样;D项中样本容量较小,可采用随机数法;只有C项中总体容量。

14、2.2分层抽样与系统抽样第1课时分层抽样基础过关1.在1 000个球中有红球50个,从中抽取100个进行分析,如果用分层抽样的方法对球进行抽样,则应抽红球()A.33个 B.20个 C.5个 D.10个解析由,则x5.答案C2.将A,B,C三种性质的个体按124的比例进行分层抽样调查,若抽取的样本容量为21,则A,B,C三种性质的个体分别抽取()A.12,6,3 B.12,3,6C.3,6,12 D.3,12,6解析由分层抽样的概念,知A,B,C三种性质的个体应分别抽取213,216,2112.答案C3.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中。

15、第2课时等比数列的性质一、选择题1在等比数列an中,a2 0198a2 016,则公比q的值为()A2 B3 C4 D8答案A解析a2 0198a2 016a2 016q3,q38,q2.2在数列an中,a11,点(an,an1)在直线y2x上,则a4的值为()A7 B8 C9 D16答案B解析点(an,an1)在直线y2x上,an12an,a110,an0,an是首项为1,公比为2的等比数列,a41238.3已知等比数列an的公比为正数,且a5a74a,a21,则a1等于()A. B. C. D2答案B解析等比数列中,a5a7a,a4a.即(a4q2)24a.q44.q0,q.又a21,所以a1.4在正项等比数列an中,a3a54,则a1a2a3a。

16、6余弦函数的图像与性质基础过关1函数ycos x|cos x|,x0,2的大致图像为()解析由题意得y显然只有D合适答案D2若f(x)cos x在b,a上是增函数,则f(x)在a,b上是()A奇函数B偶函数C减函数D增函数解析因为ycos x为偶函数并且在b,a上是增函数,所以ycos x在a,b上递减,故选C.答案C3函数ycos,x的值域是()A. B.C. D.解析0x,x.cos coscos ,y.故选B.答案B4函数y3cos x1的单调递减区间是_解析函数ycos x的单调递增区间是2k,2k(kZ)函数y3cos x1的单调递减区间是2k,2k(kZ)答案2k,2k(kZ)5比较大小:cos_cos.解析cos。

17、9.3等比数列(二)基础过关1在等比数列an中,a44,则a2a6等于()A4 B. 8C. 16 D. 32答案C解析由于aa2a6,所以a2a616.2已知各项均为正数的等比数列an中,lg(a3a8a13)6,则a1a15的值为()A100 B100C10 000 D10 000答案C解析lg(a3a8a13)lg a6,a106a8102100.又a1a15a10 000.3在正项等比数列an中,an1an,a2a86,a4a65,则等于()A. B. C. D.答案D解析设公比为q,则由等比数列an各项为正数且an1an知0q1,由a2a86,得a6.a5,a4a6q5.解得q,2.4已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列。

18、9.3等比数列(一)基础过关1设等差数列an的公差d不为0,a19d.若ak是a1与a2k的等比中项,则k等于()A2 B4 C6 D8答案B解析由题意,得an(n8)d,aa1a2k,(k8)2d29d(2k8)d,k4.2在等比数列an中,an0,且a1a21,a3a49,则a4a5的值为()A16 B27 C36 D81答案B解析由已知a1a21,a3a49,q29.q3(q3舍),a4a5(a3a4)q27.3等比数列x,3x3,6x6,的第四项等于()A24 B0 C12 D24答案A解析由(3x3)2x(6x6),即x24x30,解得x1或x3.当x1时,前三项为1,0,0不成立,舍掉当x3时,前三项为3,6,12,公比为2,所以第四项为24,选A.4如果1,a,b,c,9成等比数列,那么()。

19、9.3等比数列(四)基础过关1在14与之间插入n个数组成等比数列,如果各项总和为,那么此数列的项数为()A4 B5 C6 D7答案B解析依题意知q,由14qn1得n3,n25.2设an是公比为q的等比数列,Sn是它的前n项和,若Sn是等差数列,则q等于()A1 B0 C1或0 D1答案A解析SnSn1an,又Sn是等差数列,an为定值,即数列an为常数列,q1.3记等比数列an的前n项和为Sn,若S32,S618,则等于()A3 B5 C31 D33答案D解析由题意知公比q1, 1q39,q2, 1q512533.4在数列an中,an1can(c为非零常数),且前n项和为Sn3n2k,则实数k的值为()A. B C. D答案D解析当n1时,a1S1k,当n2。

20、9.3等比数列(三)基础过关1设数列(1)n的前n项和为Sn,则Sn等于()A.B.C.D.答案D解析Sn.2设等比数列an的前n项和为Sn,若S23,S415,则S6()A31 B32 C63 D64答案C解析在等比数列an中,S2,S4S2,S6S4也成等比数列,故(S4S2)2S2(S6S4),则(153)23(S615),解得S663.3设Sn为等比数列an的前n项和,8a2a50,则等于()A11 B5 C8 D11答案D解析由8a2a50得8a1qa1q40,又a10,q0,q2,则11.4等比数列an的前n项和为Sn,已知S3a210a1,a59,则a1等于()A. B C. D答案C 解析设等比数列an的公比为q,因为S3a210a1,a59,所以解得所以a1.故选C.5若等比数列。

【等比数列(一)课时作业(含答案)】相关DOC文档
1.2.2 第1课时 平行直线 课时作业(含答案)
1.2.2 第2课时 直线与平面平行 课时作业(含答案)
《6.2.3垂直关系(第2课时)平面与平面垂直》课时作业(含答案)
《6.2.3垂直关系(第1课时)直线与平面的垂直》课时作业(含答案)
《6.2.2平行关系(第1课时)直线与平面平行》课时作业(含答案)
《6.2.2平行关系(第2课时)平面与平面平行》课时作业(含答案)
2.3 第2课时 圆与圆的位置关系 课时作业(含答案)
1.5 第2课时 点到直线的距离公式 课时作业(含答案)
2.3 第1课时 直线与圆的位置关系 课时作业(含答案)
1.2 直线的方程 第1课时 直线方程的点斜式 课时作业(含答案)
1.5 第1课时 两点间的距离公式 课时作业(含答案)
《7.2.4直线的斜率(第1课时)倾斜角与斜率》课时作业(含答案)
2.2分层抽样与系统抽样 第2课时 系统抽样 课时作业(含答案)
2.2分层抽样与系统抽样 第1课时 分层抽样 课时作业(含答案)
3.1等比数列(第2课时)等比数列的性质 课时对点练(含答案)
§6 余弦函数的图像与性质 课时作业含答案 课时作业含答案
《9.3 等比数列(二)》课时作业(含答案)
《9.3 等比数列(一)》课时作业(含答案)
《9.3 等比数列(四)》课时作业(含答案)
《9.3 等比数列(三)》课时作业(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开