欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

第13讲等差数列_

第二章 2.2.1 等差数列,第1课时 等差数列的概念及通项公式,学习目标 1.理解等差数列的定义. 2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题. 3.掌握等差中项的概念,深化认识并能运用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等差数列的定义,思

第13讲等差数列_Tag内容描述:

1、第二章 2.2.1 等差数列,第1课时 等差数列的概念及通项公式,学习目标 1.理解等差数列的定义. 2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题. 3.掌握等差中项的概念,深化认识并能运用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等差数列的定义,思考 给出以下三个数列: (1)0,5,10,15,20; (2)4,4,4,4,; (3)18,15.5,13,10.5,8,5.5. 它们有什么共同的特征?,答案 从第2项起,每一项与它的前一项的差都是同一个常数.,梳理 一般地,如果一个数列从第 项起,每一项与它的前一项的差都。

2、第二章 2.2.1 等差数列,第2课时 等差数列的性质,学习目标 1.能根据等差数列的定义推出等差数列的常用性质. 2.能运用等差数列的性质解决有关问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等差数列通项公式的推广,思考1 已知等差数列an的首项a1和公差d能表示出通项ana1(n1)d,如果已知第m项am和公差d,又如何表示通项an?,答案 设等差数列的首项为a1,则ama1(m1)d, 变形得a1am(m1)d, 则ana1(n1)dam(m1)d(n1)dam(nm)d.,答案 等差数列通项公式可变形为andn(a1d),其图象为一条直线上孤立的一系列点,(1,a1),(m,am),(n,。

3、4.2.1 第2课时 等差数列的性质 知识点 等差数列的性质 1等差数列通项公式的推广 通项公式 通项公式的推广 ana1n1d 揭示首末两项的关系 anamnmd 揭示任意两项之间的关系 2等差数列的性质 若an是公差为 d 的等差数列,。

4、 第 1 页 / 共 8 页 第第 34 讲:数列的概念与等差数列讲:数列的概念与等差数列 一、课程标准 1、通过实例,了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数. 2、通过实例,理解等差数列的概念 3、探索并掌握等差数列的通项公式与前 n 项和的公式 4、.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题 5、体会等差数列与一次函数的。

5、22等差数列的前n项和第1课时等差数列的前n项和公式一、选择题1已知数列an中,a11,anan1(n2,nN),则数列an的前9项和等于()A27 B. C45 D9答案A解析由已知数列an是以1为首项,以为公差的等差数列,S99191827.2等差数列an的前n项和为Sn,且S36,a34,则公差d等于()A1 B. C2 D3答案C解析设an首项为a1,公差为d,则S33a1d3a13d6,a3a12d4,a10,d2.3记等差数列an的前n项和为Sn,若a1,S420,则S6等于()A16 B24 C36 D48答案D解析S426d20,d3.故S6315d48.4在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为()A10 000 B8。

6、第2课时等差数列前n项和的性质一、选择题1已知数列an满足an262n,则使其前n项和Sn取最大值时n的值为()A11或12 B12C13 D12或13答案D解析an262n,an1an2,数列an为等差数列,且a124,d2,Sn24n(2)n225n2.nN,当n12或13时,Sn最大2等差数列an中,首项a10,公差d0,d0,C中曲线满足3数列an为等差数列,它的前n项和为Sn,若Sn(n1)2,则的值是()A2 B1 C0 D1答案B解析等差数列前n项和Sn的形式为Snan2bn,(n1)2n22n1an2。

7、 48 本讲不分节,建议用时3课时复习重点为等差数列与等比数列的基本量、常用性质以及对定义的 深入理解其中共 6 道例题,等差数列与等比数列的基本量各一道例题,等差数列与等比数列的性质 各一道例题,等差数列与等比数列的判定共两道例题 一、等差数列 1定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个 数列就叫做等差数列这个常数叫做等差数列的公差,通常用字母d表示 通项公式: 1 (1)() nm aandanm d; 前n项和公式: 1 1 ()(1) 22 n n n aan n Snad 2等差数列 n a的性质(其中公差为d,前n。

8、第4课时等差数列前n项和的性质一、选择题1已知数列an满足an262n,则使其前n项和Sn取最大值的n的值为()A11或12 B12C13 D12或13答案D解析an262n,an1an2,数列an为等差数列又a124,d2,Sn24n(2)n225n2.nN*,当n12或13时,Sn最大2等差数列an中,a1a2a324,a18a19a2078,那么此数列前20项的和为()A160 B180 C200 D220答案B解析由a1a2a33a224,得a28,由a18a19a203a1978,得a1926,于是S2010(a1a20)10(a2a19)10(826)180.3在等差数列an中,Sn是其前n项和,且S2 011S2 016,SkS2 008,则正整数k为()A2 017 B2 0。

9、第3课时等差数列前n项和公式一、选择题1在20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为()A200 B100 C90 D70答案B解析S10100.2在等差数列an中,若a2a88,则该数列的前9项和S9等于()A18 B27 C36 D45答案C解析S9(a1a9)(a2a8)36.3已知数列an中,a11,anan1(n2,nN*),则数列an的前9项和等于()A27 B. C45 D9答案A解析由已知数列an是以1为首项,以为公差的等差数列,S99191827.4在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为()A10 000 B8 000C9 000 D11 000答案A解析由已知得anbn为等差数列,故其。

10、,第1讲 数列、等差数列与等比数列(小题),板块二 专题二 数 列,NEIRONGSUOYIN,内容索引,热点分类突破,真题押题精练,1,PART ONE,热点一 等差数列、等比数列的基本运算,热点二 等差数列、等比数列的性质,热点三 等差数列、等比数列的综合问题,热点四 数列的递推关系,热点一 等差数列、等比数列的基本运算,1.等差数列、等比数列的基本公式(nN*) 等差数列的通项公式:ana1(n1)d; 等比数列的通项公式:ana1qn1.,2.等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a1、公差d或公比q; (2)熟悉一些结构特征,如前n项和为Snan2bn(a,b是常数。

11、22等差数列的前n项和第1课时等差数列的前n项和公式学习目标1.掌握等差数列前n项和公式及其获取思路.2.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中任意三个求另外两个.3.能用an与Sn的关系求an.知识点一等差数列前n项和公式已知量首项,末项与项数首项,公差与项数选用公式SnSnna1d知识点二a1,d,n,an,Sn知三求二(1)在等差数列an中,ana1(n1)d,Sn或Snna1d.两个公式共涉及a1,d,n,an及Sn五个基本量,它们分别表示等差数列的首项,公差,项数,项和前n项和(2)依据方程的思想,在等差数列前n项和公式中已知其中三个量可。

12、第2课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列性质2若等差数列的项数为2n(nN),则S2nn(anan1),S偶S奇nd,(S奇0);若等差数列的项数为2n1(nN),则S2n1(2n1)an(an是数列的中间项),S奇S偶an,(S奇0)性质3an为等差数列为等差数列知识点二等差数列an的前n项和公式与函数的关系将等差数列前n项和公式Snna1d整理成关于n的函数可得Snn2n.知识点三等差数列前n项和的。

13、第4课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列若等差数列的项数为2n(nN*),则S2nn(anan1),S偶S奇nd,(S奇0);性质2若等差数列的项数为2n1(nN*),则S2n1(2n1)an(an是数列的中间项),S奇S偶an,(S奇0)知识点二等差数列an的前n项和公式与函数的关系1将公式Snna1变形,得Snn2n.若令A,a1B,则上式可以写成SnAn2Bn,(1)等差数列前n项和Sn不一定是关于n的二次函数。

14、2等差数列21等差数列第1课时等差数列的概念及通项公式一、选择题1若数列an满足3an13an1,则数列an是()A公差为1的等差数列B公差为的等差数列C公差为的等差数列D不是等差数列答案B解析由3an13an1,得3an13an1,即an1an.所以数列an是公差为的等差数列2已知数列an是等差数列,a22,a58,则公差d的值为()A. B C2 D2答案C解析设an的首项为a1,公差为d,根据题意得解得d2.3在数列an中,a12,2an12an1,则a101的值为()A52 B51 C50 D49答案A解析因为2an12an1,a12,所以数列an是首项a12,公差d的等差数列,所以a101a1100d210052.4已知在等差数列an中。

15、学科教师辅导讲义学员编号: 年 级:五年级 课 时 数:3学员姓名:辅导科目:奥数学科教师: 授课主题第02讲等差数列授课类型T同步课堂P实战演练S归纳总结教学目标 掌握等差数列的基本概念,首项、末项、公差等; 掌握等差数列的常用公式,并能灵活运用。授课日期及时段T(Textbook-Based)同步课堂知识梳理一、数列的概念按一定顺序排成的一列数叫做数列。数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。数列中共有的项的个数叫做项数。如:2、5、8、11、14、17、20、 从第二项起,每一项比前一项大3 ,递增数列100、95、。

16、学科教师辅导讲义学员编号: 年 级:五年级 课 时 数:3学员姓名:辅导科目:奥数学科教师: 授课主题第02讲等差数列授课类型T同步课堂P实战演练S归纳总结教学目标 掌握等差数列的基本概念,首项、末项、公差等; 掌握等差数列的常用公式,并能灵活运用。授课日期及时段T(Textbook-Based)同步课堂知识梳理一、数列的概念按一定顺序排成的一列数叫做数列。数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。数列中共有的项的个数叫做项数。如:2、5、8、11、14、17、20、 从第二项起,每一项比前一项大3 ,递增数列100、95、。

17、 第第 13 讲讲 等差数列等差数列 兴趣篇兴趣篇 1、 (1)2,5,8,11,14, 上面是按规律排列的一串数,其中第 21 项是多少? (2)把比 100 大的奇数从小到大排成一列,其中第 21 个是多少? 2、如图,有一堆按规律摆放的砖。从上往下数。第一层有 1 块砖,第 2 层有 5 块砖,第 3 层有 9 块砖 按照这样的规律,第 19 层有多少块砖? 3、已知一个等差数列。

18、2等差数列21等差数列第1课时等差数列的概念及通项公式学习目标1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题知识点一等差数列的定义一般地,如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差,公差通常用字母d表示,可正可负可为零(1)求公差d时,可以用danan1(n2,nN)或dan1an(nN)(2)对于公差d,当d0时,数列为常数列;当d0时,数列为递增数列;当d0,则该数列为递增数列()4若三个数a,b,c满。

19、第2课时等差数列的性质一、选择题1在等差数列an中,a2a46,则a1a2a3a4a5等于()A30 B15 C5 D10答案B解析在等差数列an中,a2a46,a33,a1a2a3a4a55a315.故选B.2设数列an,bn都是等差数列,且a125,b175,a2b2100,则a37b37等于()A0 B37 C100 D37答案C解析a1b1100a2b2,anbn是常数列,a37b37100.3等差数列an中,若a3a4a5a6a7450,则a2a8的值等于()A45 B75 C180 D300答案C解析a3a4a5a6a7(a3a7)(a4a6)a55a5450,a590.a2a82a5180.4已知等差数列an的公差为d(d0),且a3a6a10a1332,若am8,则m的值为(。

20、第2课时等差数列的性质学习目标1.了解等差中项的概念.2.能根据等差数列的定义推出等差数列的常用性质.3.能运用等差数列的性质解决有关问题知识点一等差数列的单调性与图像从函数角度研究等差数列的性质与图像由anf(n)a1(n1)ddn(a1d),可知其图像是直线ydx(a1d)上的一些等间隔的点,这些点的横坐标是正整数,其中公差d是该直线的斜率,即自变量每增加1,函数值增加d.当d0时,an为递增数列,如图甲所示当d0时,an为递减数列,如图乙所示当d0时,an为常数列,如图丙所示知识点二等差中项的概念如果在a与b中间插入一个数A,使a,A,b成等差数。

【第13讲等差数列_】相关PPT文档
4.2.1(第2课时)等差数列的性质ppt课件
数学(理科)高三二轮复习系列第1讲 数列、等差数列与等比数列(小题)
【第13讲等差数列_】相关DOC文档
第34讲 数列的概念与等差数列(学生版)备战2021年新高考数学微专题讲义
高三理科数学暑期讲义 第5讲.等差数列与等比数列 教师版
2.2等差数列的前n项和(第1课时)等差数列的前n项和公式 学案(含答案)
2.2等差数列的前n项和(第2课时)等差数列前n项和的性质 学案(含答案)
2.2.2等差数列的通项公式(第4课时)等差数列前n项和的性质 学案(含答案)
2.1等差数列(第1课时)等差数列的概念及通项公式 课时对点练(含答案)
五年级奥数第02讲-等差数列(学)
五年级奥数第02讲-等差数列(教)
奥数导引小学三年级含详解答案 第13讲:等差数列_
2.1等差数列(第1课时)等差数列的概念及通项公式 学案(含答案)
2.1等差数列(第2课时)等差数列的性质 课时对点练(含答案)
2.1等差数列(第2课时)等差数列的性质 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开