第十二讲第十二讲 一次函数和代数综合一次函数和代数综合 模块模块一一:一次函数一次函数(0)ykxb k图像图像的的变换及特殊位置关系:变换及特殊位置关系: 1平移平移:上加下减,左加右减; 2对称对称:关于哪轴对称那轴对应坐标不变,另外一个变为原来的相反数; 3中心对称:中心对称:x 和 y 值
第16讲Tag内容描述:
1、 第十二讲第十二讲 一次函数和代数综合一次函数和代数综合 模块模块一一:一次函数一次函数(0)ykxb k图像图像的的变换及特殊位置关系:变换及特殊位置关系: 1平移平移:上加下减,左加右减; 2对称对称:关于哪轴对称那轴对应坐标不变,另外一个变为原来的相反数; 3中心对称:中心对称:x 和 y 值都变 4三大变换通解方法:三大变换通解方法:找两个点(如与坐标轴的两个交点) ,进行相应变化后。
2、专项提能特训专项提能特训 2 工业流程中含铁化合物的制备工业流程中含铁化合物的制备 1FeCO3与砂糖混用可以作补血剂,实验室里制备 FeCO3的流程如图所示,下列说法不正 确的是( ) A产品 FeCO3在空气中高温分解可得到纯净的 FeO B沉淀过程中有 CO2气体放出 C过滤操作常用的玻璃仪器有烧杯、漏斗和玻璃棒 D可利用 KSCN 溶液检验 FeSO4溶液是否变质 答案 A 解析 FeC。
3、第第 16 讲讲 家庭电路家庭电路 用电安全用电安全 课标要求 考试细则 【课程内容】 1.了解家庭电路的组成。 2.知道测电笔的结构和使用方法。 3.知道保险丝的作用,会选用保险丝。 4.知道断路器的作用和工作原理。 5.知道三孔插座、三脚插头的连接和作用。 1.家庭电路 (1)知道家庭电路的组成,会用测电笔辨别 火线和零线。 (2)知道熔断器和断路器的作用。 2.安全用电常识:了解安全用电常。
4、深圳中考专项复习第深圳中考专项复习第 1616 讲之应用题讲之应用题 【考点分析】 处于在中考卷第 21 题左右的位置,是一道应用题,第(1)小题一般涉及分式方程、一元二次方程解应用题, 第(2)小题多涉及利用一次函数或二次函数的增减性求解经济问题中的最值问题。 【最近五年深圳中考实题解题思路分析】 1.(2020 深圳)端午节前夕,某商铺用 620 元购进 50 个肉粽和 30 个蜜枣粽,肉。
5、 1 第第1616讲讲 相似三角形及其应用相似三角形及其应用 一、考点知识梳理一、考点知识梳理 【考点【考点 1 1 比例线段】比例线段】 1.比例的相关概念及性质 (1)线段的比:两条线段的比是两条线段的长度之比 (2)比例中项:如果a b b c,即 b 2ac,我们就把 b 叫做 a,c 的比例中项 (3)比例的性质 性质 1:a b c d adbc(a,b,c,d0) 性质 2:如果a 。
6、 1 第第1616讲讲 相似三角形及其应用相似三角形及其应用 一、考点知识梳理一、考点知识梳理 【考点【考点 1 1 比例线段】比例线段】 1.比例的相关概念及性质 (1)线段的比:两条线段的比是两条线段的长度之比 (2)比例中项:如果a b b c,即 b 2ac,我们就把 b 叫做 a,c 的比例中项 (3)比例的性质 性质 1:a b c d adbc(a,b,c,d0) 性质 2:如果a 。
7、 1 第 16 讲 全等三角形 【考点梳理】 全等三角形 (1)性质:全等三角形对应边相等,对应角相等注意:全等三角形对应线段(中线,高)相等;对应角的平 分线相等;全等三角形的周长、面积也相等 (2)判定: 两边和夹角对应相等的两个三角形全等(SAS); 两角和夹边对应相等的两个三角形全等(ASA ); 两角和其中一角的对边对应相等的两个三角形全等(AAS); 三边对应相等的两个三角形全等(SS。
8、第第 16 讲讲 全等三角形全等三角形 【考点梳理】 全等三角形 (1)性质:全等三角形对应边相等,对应角相等注意:全等三角形对应线段(中线,高)相等;对应角的平 分线相等;全等三角形的周长、面积也相等 (2)判定: 两边和夹角对应相等的两个三角形全等(SAS); 两角和夹边对应相等的两个三角形全等(ASA ); 两角和其中一角的对边对应相等的两个三角形全等(AAS); 三边对应相等的两个三角形全。
9、 1 第 16 讲 直角三角形 【考点导引】 1.了解直角三角形的有关概念,掌握其性质与判定 2掌握勾股定理与逆定理,并能用来解决有关问题. 【难点突破】 1. 证明一个三角形是直角三角形的方法比较多, 最简捷的方法就是求出一个角等于 90 , 也可以利用三角形 一边上的中线等于这边的一半,或者利用勾股定理的逆定理证得 . 直角三角形除具有两锐角互余、两直角边的平方和等于斜边的平方、斜边的中线等。
10、 1 第 16 讲 直角三角形 【考点导引】 1.了解直角三角形的有关概念,掌握其性质与判定 2掌握勾股定理与逆定理,并能用来解决有关问题. 【难点突破】 1. 证明一个三角形是直角三角形的方法比较多, 最简捷的方法就是求出一个角等于 90 , 也可以利用三角形 一边上的中线等于这边的一半,或者利用勾股定理的逆定理证得 . 直角三角形除具有两锐角互余、两直角边的平方和等于斜边的平方、斜边的中线等。
11、 第 1 页 / 共 16 页 第第 16 讲:函数模型及其运用讲:函数模型及其运用 一、课程标准 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数 增长等不同函数类型增长的含义. 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数 模型的广泛应用. 二、基础知识回顾 1.指数、对数、幂函数模型性质比。