第2课时平面与平面平行 学习目标 1理解平面与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理、性质定理,并知道其地位和作用3能运用平面与平面平行的判定定理、性质定理证明一些空间面面关系的简单问题 知识链接 1直线与平面平行的判定定理:平面外一条直
第1课时 平面的概念 学案含答案Tag内容描述:
1、第2课时平面与平面平行学习目标 1理解平面与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理、性质定理,并知道其地位和作用3能运用平面与平面平行的判定定理、性质定理证明一些空间面面关系的简单问题知识链接1直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行2直线和平面平行的性质定理:一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行预习导引面面平行的判定定理、性质定理定理表示面面平行的判定定理面面。
2、一一 曲线的参数方程曲线的参数方程 第第 1 课时课时 参数方程的概念及圆的参数方程参数方程的概念及圆的参数方程 学习目标 1.理解曲线参数方程的有关概念.2.掌握圆的参数方程.3.能够根据圆的参数方程 解决最值问题 知识点一 参数方程的概念 思考 在生活中,两个陌生的人通过第三方建立联系,那么对于曲线上点的坐标(x,y),直 接描述它们之间的关系比较困难时,可以怎么办呢? 答案 可以引入参数,。
3、1 1. .1.11.1 集合及其表示方法集合及其表示方法 第第 1 课时课时 集合的概念及几种常见的数集集合的概念及几种常见的数集 学习目标 1.通过实例了解集合的含义.2.理解集合中元素的特点.3.体会元素与集合的“属 于”关系,记住常用数集的表示符号并会应用.4.理解集合相等的概念. 知识点一 元素与集合的概念 1.集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合.。
4、62.2平行关系第1课时直线与平面平行学习目标 1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理、性质定理,并知道其地位和作用3能运用直线与平面平行的判定定理、性质定理证明一些空间线面关系的简单问题预习导引1直线与平面平行的定义ll2线面平行的判定定理、性质定理定理表示线面平行的判定定理线面平行的性质定理文字叙述平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行符号。
5、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质学习目标1.了解平面与平面的位置关系,掌握面面平行的判定定理、性质定理.2.会利用“线线平行”“线面平行”及“面面平行”相互之间的转化,来证明“线线平行”“线面平行”及“面面平行”等问题.3.了解两个平面间的距离的概念.知识点一两个平面的位置关系位置关系图形表示符号表示公共点平面与平面平行没有公共点平面与平面相交l有一条公共直线知识点二平面与平面平行的判定定理表示定理图形文字符号两个平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么。
6、第2课时平面与平面垂直学习目标1.理解面面垂直的定义,并能画出面面垂直的图形.2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化.3.掌握面面垂直的证明方法,并能在几何体中应用知识点一平面与平面垂直的定义1条件:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直2结论:两个平面互相垂直3记法:平面,互相垂直,记作.知识点二平面与平面垂直的判定定理平面与平面垂直的判定定理文字语言如果一个平面过另一个平面的垂线,则这两个平面互相垂直图形语言符号语言a,a知识点。
7、第3课时平面与平面平行学习目标1.掌握平面与平面的位置关系,会判断平面与平面的位置关系.2.学会用图形语言、符号语言表示平面间的位置关系.3.掌握空间中面面平行的判定定理及性质定理,并能应用这两个定理解决问题知识点一平面与平面平行的判定平面平行的判定定理及推论判定定理推论文字语言如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行符号语言l,m,l,m,lmAac,bd,abA,a,b,c,d图形语言知识点二平面与平面平行的性质平面。
8、二二 极坐标系极坐标系 第第 1 课时课时 极坐标系的概念极坐标系的概念 学习目标 1.了解极坐标系的实际背景.2.理解极坐标系的概念.3.理解极坐标的多值性 知识点 极坐标系 思考1 某同学说他家在学校东偏北60 , 且距学校1公里处, 那么他说的位置能惟一确定吗? 这个位置是由哪些量确定的? 答案 能惟一确定;位置是由角和距离两个量确定的 思考 2 类比平面直角坐标系,怎样建立用角与距离确定。
9、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.掌握空间中直线与平面平行的判定定理.知识点一直线与平面的位置关系位置关系直线a在平面内直线a在平面外直线a与平面相交直线a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示aaAa图形表示提示:利用公共点的个数可以判断直线与平面的位置关系.知识点二直线与平面平行的判定定理表示定理图形文字符号直线与平面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直。
10、第第 3 3 课时课时 空间中直线、平面的垂直空间中直线、平面的垂直 1设直线 l1,l2的方向向量分别为 a(2,2,1),b(3,2,m),若 l1l2,则 m 等于( ) A2 B2 C10 D6 答案 C 解析 因为 ab,所以 a b0, 即232(2)m0, 解得 m10. 2若平面 , 的法向量分别为 a(1,2,4),b(x,1,2),且 ,则 x 的值为( ) A10 B10 。
11、第第 2 2 课时课时 空间中直线空间中直线、平面的平行平面的平行 1与向量 a(1,3,2)平行的一个向量的坐标是( ) A. 1 3,1,1 B(1,3,2) C. 1 2, 3 2,1 D( 2,3,2 2) 答案 C 解析 a(1,3,2)2 1 2, 3 2,1 . 2若平面 , 的一个法向量分别为 m 1 6, 1 3,1 ,n 1 2,1,3 ,则( ) A B C。
12、3 32.22.2 奇偶性奇偶性 第第 1 1 课时课时 奇偶性的概念奇偶性的概念 学习目标 1.了解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函 数图象的对称性解决简单问题 知识点一 函数奇偶性的几何特征 一般地,图象关于 y 轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数 知识点二 函数奇偶性的定义 1偶函数:函数 f(x)的定义域为 I,如果xI,都。
13、1.2.3空间中的垂直关系第1课时直线与平面垂直学习目标1.理解直线与平面垂直的定义及性质.2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题知识点一直线与平面垂直的定义及性质1直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直2直线与平面垂直的定义及性质定义及符号表示图形语言及画法有关名称重要结论如果一条直线(AB)和一个平面()相交于点O,并且和这个平面内过交点(O)的任何直线都垂直我们就说这条直线和这个平面互相垂直,记作AB把直线AB画成和表示平。
14、5.1函数的概念和图象 第1课时函数的概念 学习目标1.会用集合语言和对应关系刻画函数.2.理解函数的概念,了解构成函数的要素.3.会求简单函数的定义域与值域 知识点函数的概念 概念 给定两个非空实数集合A和B,如果按照某种对应关系f,对于集合A中的每一个实数x,在集合B中都有唯一的实数y和它对应,那么就称f:AB为集合A到集合B的一个函数 对应关系 yf(x),xA 对应关系相同,定义域相同的两。
15、1.11.1 集合的概念与表示集合的概念与表示 第第 1 1 课时课时 集合的概念集合的概念 学习目标 1.通过实例了解集合的含义.2.理解集合中元素的特征.3.体会元素与集合的“属 于”关系,记住常用数集的表示符号并会应用 知识点一 元素与集合的概念 1集合:一般地,一定范围内某些确定的、不同的对象的全体组成一个集合,通常用大写的 拉丁字母来表示集合 2元素:集合中的每一个对象称为该集合的元素。
16、1.41.4 空间向量的应用空间向量的应用 1 14.14.1 用空间向量研究直线用空间向量研究直线、平面的位置关系平面的位置关系 第第 1 1 课时课时 空间中点空间中点、直线和平面的向量表示直线和平面的向量表示 1已知向量 a(2, 1,3)和 b(4,2x2,6x)都是直线 l 的方向向量,则 x 的值是( ) A1 B1 或1 C3 D1 答案 A 解析 由题意得 ab,所以 。
17、3.2对数函数3.2.1对数第1课时对数的概念学习目标1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值知识点一对数的概念一般地,如果a(a0,a1)的b次幂等于N,即abN,那么就称b是以a为底N的对数,记作logaNb,其中,a叫做对数的底数,N叫做真数通常将以10为底的对数称为常用对数,以e为底的对数称为自然对数log10N可简记为lg N,logeN简记为ln N.提示logaN是一个数,是一种取对数的运算结果仍是一个数,不可分开书写知识点二对数与指数的关系(1)对数与指数的关系若a0,a1,且N0,则axNlogaNx.对数恒等式:N;logaaxx(a0,且。
18、3.13.1 函数的概念与性质函数的概念与性质 3 3. .1.11.1 函数及其表示方法函数及其表示方法 第第 1 1 课时课时 函数的概念函数的概念 学习目标 1.在初中用变量之间的依赖关系描述函数的基础上, 用集合语言和对应关系刻画 函数,建立完整的函数概念.2.体会集合语言和对应关系在刻画函数概念中的作用.3.了解构成 函数的要素,能求简单函数的定义域和值域. 知识点一 函数的有关概念 。
19、第2课时平面的基本性质应用(习题课)学习目标掌握有关平面的三个公理及三个推论及其应用一、点共线问题例1如图,在正方体ABCDA1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线证明如图,连结A1B,CD1,显然B平面A1BCD1,D1平面A1BCD1,BD1平面A1BCD1.同理BD1平面ABC1D1.平面ABC1D1平面A1BCD1BD1.A1C平面ABC1D1Q,Q平面ABC1D1.又A1C平面A1BCD1,Q平面A1BCD1.Q在平面A1BCD1与ABC1D1的交线上,即QBD1,B,Q,D1三点共线反思感悟证明多点共线通常利用公理2,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在。
20、1.2点、线、面之间的位置关系1.2.1平面的基本性质第1课时 平面的概念一、选择题1.下列四个选项中的图形表示两个相交平面,其中画法正确的是()答案D解析画两个相交平面时,被遮住的部分用虚线表示.2.空间不共线的四点可以确定平面的个数为()A.1B.4C.5D.1或4答案D解析若四点共面,则可确定1个平面;若四点不共面,则可确定4个平面.3.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面答案D解析如果两个平面重合,则排除A,B;两个平面相交。