欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

第1课时 直线与平面平行的判定 学案含答案

72.4直线的斜率 第1课时倾斜角与斜率 学习目标 1理解直线的倾斜角和斜率的概念2掌握求直线斜率的两种方法 预习导引 1直线的倾斜角 (1)当直线l与x轴相交时,它的倾斜角就是x轴绕交点沿逆时针方向旋转到与直线重合时所转的最小正角当直线与x轴平行或重合时,规定倾斜角0 (2)倾斜角的范围:0. 2

第1课时 直线与平面平行的判定 学案含答案Tag内容描述:

1、72.4直线的斜率第1课时倾斜角与斜率学习目标 1理解直线的倾斜角和斜率的概念2掌握求直线斜率的两种方法预习导引1直线的倾斜角(1)当直线l与x轴相交时,它的倾斜角就是x轴绕交点沿逆时针方向旋转到与直线重合时所转的最小正角当直线与x轴平行或重合时,规定倾斜角0(2)倾斜角的范围:0.2斜率的概念及斜率公式定义倾斜角不是90的直线,它的倾斜角的正切值叫作这条直线的斜率,记为k,即ktan_取值范围当0时,k0;当090时,k0;当90180时,k0;当90时,斜率不存在过两点的直线的斜率公式直线经过两点P1(x1,y1),P2(x2,y2),其斜率k(x1x2)题型。

2、1.2.3空间中的垂直关系第1课时直线与平面垂直基础过关1.已知m,n表示两条不同直线,表示平面.下列说法正确的是()A.若m,n,则mnB.若m,n,则mnC.若m,mn,则nD.若m,mn,则n答案B解析方法一若m,n,则m,n可能平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错.方法二如图,在正方体ABCDABCD中,用平面ABCD表示.A项中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故A错.B项中,m,n,满足mn,这是线面垂直的性质,故。

3、第3课时直线与平面垂直的判定和性质一、选择题1.已知PA矩形ABCD,下列结论中,不正确的是()A.PBBC B.PDCDC.PDBD D.PABD答案C解析依题意画出几何图形,如图,显然PDBD不正确;BC平面PAB,则PBBC;CD平面PAD,则PDCD;PA平面ABCD,则PABD.2.ABC所在的平面为,直线lAB,lAC,直线mBC,mAC,l,m为两条不重合的直线,则直线l,m的位置关系是()A.平行 B.垂直C.相交 D.以上都有可能答案A解析直线lAB,lAC,且ABACA,l平面,同理直线m平面.由线面垂直的性质定理可得lm.3.已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A.垂直且相。

4、第2课时直线与平面平行的性质一、选择题1.若直线l平面,则过l作一组平面与相交,记所得的交线分别为a,b,c,那么这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点答案A解析因为直线l平面,所以根据直线与平面平行的性质知la,lb,lc,所以abc,故选A.2.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EHFG,则EH与BD的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A3.如图,在三棱柱ABCA1B1C1中,AM2MA1,BN2NB1,过MN作一平面交底面三角形ABC的边BC,A。

5、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线AxByC0与圆(xa)2(yb)2r2的位置关系及判断位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离为ddr代数法:由消元得到一元二次方程,可得方程的判别式0001.若直线与圆有公共点,则直线与圆相交.()2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.()3.若圆心到直线的距离大于半径,。

6、2.2.2直线与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线与圆的三种位置关系及判定位置关系相离相切相交图示几何法比较d与r的大小drdrdr代数法依据方程组解的情况方程组无解方程组只有一组解方程组有两组不同解一、直线与圆的位置关系的判断例1求实数m的取值范围,使直线xmy30与圆x2y26x50分别满足:相交;相切;相离.解圆的方程化为标准形式为(x3)2y24,故圆心(3,0)到直线xmy3。

7、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质一、选择题1.下列四个说法中正确的是()A.平面内有无数个点到平面的距离相等,则B.a,b,且ab(,分别表示平面,a,b表示直线),则C.平面内一个三角形三边分别平行于平面内的一个三角形的三条边,则D.平面内的一个平行四边形的两边与平面内的一个平行四边形的两边对应平行,则答案C解析由面面平行的判定定理知C正确.2.如图所示,设E,F,E1,F1分别是长方体ABCDA1B1C1D1的棱AB,CD,A1B1,C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A解。

8、2.1.3两条直线的平行与垂直第1课时两条直线的平行学习目标1.理解并掌握两条直线平行的条件.2.能根据已知条件判断两直线平行.3.会利用两直线平行求参数及直线方程.知识点两条直线平行的判定类型斜率存在斜率不存在前提条件12901290对应关系l1l2k1k2且b1b2l1l2两直线斜率都不存在图示一、两条直线平行的判定例1下列直线l1与直线l2平行的有_.(填序号)l1经过点A(1,1),B(2,3),l2经过点C(1,0),D(2,2);l1的斜率为2,l2经过点A(1,1),B(2,2);l1的倾斜角为60,l2经过点M(1,),N(2,2);l1经过点E(3,2),F(3,10),l2经过点P(5,2),Q(5,5).。

9、1.2.3空间中的垂直关系第1课时直线与平面垂直学习目标1.理解直线与平面垂直的定义及性质.2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题知识点一直线与平面垂直的定义及性质1直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直2直线与平面垂直的定义及性质定义及符号表示图形语言及画法有关名称重要结论如果一条直线(AB)和一个平面()相交于点O,并且和这个平面内过交点(O)的任何直线都垂直我们就说这条直线和这个平面互相垂直,记作AB把直线AB画成和表示平。

10、8 8. .5.25.2 直线与平面平行直线与平面平行 第一课时第一课时 直线与平面平行的判定直线与平面平行的判定 基础达标 一选择题 1.下列条件中能得出直线 m 与平面 平行的是 A.直线 m 与平面 内所有直线平行 B.直线 m 与平。

11、62.2平行关系第1课时直线与平面平行基础过关1直线l是平面外的一条直线,下列条件中可推出l的是()Al与内的一条直线不相交Bl与内的两条直线不相交Cl与内的无数条直线不相交Dl与内的任意一条直线不相交答案D解析由线面平行的定义可知D正确2下列命题中正确的个数是()ab,ba;a,bab;ab,ab;a,bab.A0 B1 C2 D3答案A解析中还可能有a,中a,b还可能异面,中还可能b,中还可能a和b相交、异面3有以下三个命题:一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;过直线外一点,有且只有一个平面和已知直线平行;如果直线l平面,那。

12、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定一、选择题1.下列条件中能得出直线m与平面平行的是()A.直线m与平面内所有直线平行B.直线m与平面内无数条直线平行C.直线m与平面没有公共点D.直线m与平面内的一条直线平行答案C解析A,本身说法错误;B,当直线m在平面内时,m与不平行;C,能推出m与平行;D,当直线m在平面内时,m与不平行.故选C.2.如果平面外有两点A,B,它们到平面的距离都是a,则直线AB和平面的位置关系一定是()A.平行 B.相交C.平行或相交 D.AB答案C解析结合图形可知选项C正确.3.若直线a平面,直线b平面,则a与b的位。

13、1.2.2空间中的平行关系第1课时平行直线、直线与平面平行基础过关1.能保证直线a与平面平行的条件是()A.a,b,abB.b,abC.b,c,acD.b,Aa,Ba,Cb,Db,且ACBD答案A解析由直线与平面平行的判定定理知A正确.2.下列命题中正确的是()A.若直线l上有无数个点不在平面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另。

14、第2课时直线与平面平行学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题知识点一直线与平面的位置关系直线与平面的位置关系定义图形语言符号语言直线在平面内有无数个公共点a直线与平面相交有且只有一个公共点aA直线与平面平行没有公共点a知识点二直线与平面平行的判定直线与平面平行的判定定理文字语言符号表示图形表示如果不在一个平面内一条直线和平面内的一条直线平行,那么这。

15、第2课时直线与平面平行的性质学习目标1.理解直线与平面平行的性质定理.2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题.知识点直线与平面平行的性质定理表示定理图形文字符号直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ab一、线面平行的性质定理的应用命题角度1用线面平行的性质定理证明线线平行例1如图所示,在四棱锥PABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:APGH.证。

16、62.2平行关系第1课时直线与平面平行学习目标 1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理、性质定理,并知道其地位和作用3能运用直线与平面平行的判定定理、性质定理证明一些空间线面关系的简单问题预习导引1直线与平面平行的定义ll2线面平行的判定定理、性质定理定理表示线面平行的判定定理线面平行的性质定理文字叙述平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行符号。

17、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质学习目标1.了解平面与平面的位置关系,掌握面面平行的判定定理、性质定理.2.会利用“线线平行”“线面平行”及“面面平行”相互之间的转化,来证明“线线平行”“线面平行”及“面面平行”等问题.3.了解两个平面间的距离的概念.知识点一两个平面的位置关系位置关系图形表示符号表示公共点平面与平面平行没有公共点平面与平面相交l有一条公共直线知识点二平面与平面平行的判定定理表示定理图形文字符号两个平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么。

18、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.掌握空间中直线与平面平行的判定定理.知识点一直线与平面的位置关系位置关系直线a在平面内直线a在平面外直线a与平面相交直线a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示aaAa图形表示提示:利用公共点的个数可以判断直线与平面的位置关系.知识点二直线与平面平行的判定定理表示定理图形文字符号直线与平面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直。

【第1课时 直线与平面平行的判定 学案含答案】相关DOC文档
7.2.4直线的斜率(第1课时)倾斜角与斜率 学案(含答案)
《1.2.3空间中的垂直关系(第1课时)直线与平面垂直》课后作业(含答案)
2.3 第1课时 直线与圆的位置关系 学案(含答案)
第1课时 直线与圆的位置关系 学案(含答案)
第1课时 两条直线的平行 学案(含答案)
1.2.3 第1课时 直线与平面垂直 学案(含答案)
8.5.2(第一课时)直线与平面平行的判定 课后作业(含答案)
《6.2.2平行关系(第1课时)直线与平面平行》课时作业(含答案)
1.2.2 第2课时 直线与平面平行 学案(含答案)
第2课时 直线与平面平行的性质 学案(含答案)
6.2.2平行关系(第1课时)直线与平面平行 学案(含答案)
第1课时 两平面平行的判定与性质 学案(含答案)
第1课时 直线与平面平行的判定 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开